Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 25(45): 8156-8161, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37939227

ABSTRACT

A proline-squaraine ligand (Pro-SqEB) that demonstrates high levels of stereoselectivity in olefin cyclopropanations when anchored to a Rh2II scaffold is introduced. High yields and enantioselectivities were achieved in the cyclopropanation of alkenes with diazo compounds in the presence of Rh2(Pro-SqEB)4. Notably, the unique electronic and steric design of this catalyst enabled the use of polar solvents that are otherwise incompatible with most RhII complexes.

2.
ChemMedChem ; 17(4): e202100512, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34994084

ABSTRACT

Deregulation of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) plays a significant role in developmental brain defects, early-onset neurodegeneration, neuronal cell loss, dementia, and several types of cancer. Herein, we report the discovery of three new classes of N-heterocyclic DYRK1A inhibitors based on the potent, yet toxic kinase inhibitors, harmine and harmol. An initial in vitro evaluation of the small molecule library assembled revealed that the core heterocyclic motifs benzofuranones, oxindoles, and pyrrolones, showed statistically significant DYRK1A inhibition. Further, the utilization of a low cost, high-throughput functional genomic in vivo model system to identify small molecule inhibitors that normalize DYRK1A overexpression phenotypes is described. This in vivo assay substantiated the in vitro results, and the resulting correspondence validates generated classes as architectural motifs that serve as potential DYRK1A inhibitors. Further expansion and analysis of these core compound structures will allow discovery of safe, more effective chemical inhibitors of DYRK1A to ameliorate phenotypes caused by DYRK1A overexpression.


Subject(s)
Drosophila Proteins/antagonists & inhibitors , Harmine/analogs & derivatives , Harmine/pharmacology , Heterocyclic Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drug Design , Harmine/chemical synthesis , Harmine/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , Dyrk Kinases
3.
Org Lett ; 23(8): 2853-2857, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33769064

ABSTRACT

A phosphorus(III)-mediated dearomatization of ortho-substituted dianiline squaraine dyes results in an unusual skeletal rearrangement to provide exotic, highly conjugated benzofuranone and oxindole scaffolds bearing a C3 side chain comprised of a linear conflagration of an enol, a phosphorus ylide, and 2,4-disubstituted aniline. Employing experimental and computational analysis, a mechanistic evaluation revealed a striking dependence on the acidity of the aniline ortho substituent. Notably, the rearrangement adducts underwent rapid and complete reversion to the parent squaraine in the presence of a Brønsted acid.

4.
ChemMedChem ; 14(18): 1653-1661, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31140738

ABSTRACT

With evolutionary drug resistance impacting efforts to treat disease, the need for small molecules that exhibit novel molecular mechanisms of action is paramount. In this study, we combined scaffold-directed synthesis with a hybrid experimental and transcriptome analysis to identify bis-spirooxindole cyclopropanes that inhibit cancer cell proliferation through disruption of ribosomal function. These findings demonstrate the value of an integrated, biologically inspired synthesis and assay strategy for the accelerated identification of first-in-class cancer therapeutic candidates.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclopropanes/pharmacology , Oxindoles/pharmacology , RNA, Neoplasm/drug effects , Ribosomes/drug effects , Spiro Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cyclopropanes/chemical synthesis , Cyclopropanes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Oxindoles/chemical synthesis , Oxindoles/chemistry , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , Transcriptome , Tumor Cells, Cultured
5.
Chem Commun (Camb) ; 55(22): 3286-3289, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30810572

ABSTRACT

Nucleophilic addition of phosphorus(iii) agents to the electrophilic core of intensely colored squaraine dyes gives a bleached zwitterionic adduct in good to excellent yields (up to 99%) at room temperature. The process can be reversed by adding specific transition metal complexes with high phosphorous(iii) affinity.

SELECTION OF CITATIONS
SEARCH DETAIL
...