Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Microsyst Nanoeng ; 9: 59, 2023.
Article in English | MEDLINE | ID: mdl-37201103

ABSTRACT

The ability to control high-voltage actuator arrays relies, to date, on expensive microelectronic processes or on individual wiring of each actuator to a single off-chip high-voltage switch. Here we present an alternative approach that uses on-chip photoconductive switches together with a light projection system to individually address high-voltage actuators. Each actuator is connected to one or more switches that are nominally OFF unless turned ON using direct light illumination. We selected hydrogenated amorphous silicon (a-Si:H) as our photoconductive material, and we provide a complete characterization of its light to dark conductance, breakdown field, and spectral response. The resulting switches are very robust, and we provide full details of their fabrication processes. We demonstrate that the switches can be integrated into different architectures to support both AC and DC-driven actuators and provide engineering guidelines for their functional design. To demonstrate the versatility of our approach, we demonstrate the use of the photoconductive switches in two distinctly different applications-control of µm-sized gate electrodes for patterning flow fields in a microfluidic chamber and control of cm-sized electrostatic actuators for creating mechanical deformations for haptic displays.

2.
Anal Chem ; 94(30): 10584-10588, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35861417

ABSTRACT

We present a microfluidic device for selective separation and extraction of molecules based on their diffusivity. The separation relies on electroosmotically driven bidirectional flows in which high-diffusivity species experience a net-zero velocity and lower diffusivity species are advected to a collection reservoir. The device can operate continuously and is suitable for processing low sample volumes. Using several model systems, we show that the extraction efficiency of the system is maintained at more than 90% over tens of minutes with a purity of more than 99%. We demonstrate the applicability of the device to the extraction of genomic DNA from short DNA fragments.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , DNA
3.
Nat Rev Chem ; 6(1): 70-80, 2022 Jan.
Article in English | MEDLINE | ID: mdl-37117618

ABSTRACT

Lab-on-a-chip devices leverage microfluidic technologies to enable chemical and biological processes at small scales. However, existing microfluidic channel networks are typically designed for the implementation of a single function or a well-defined protocol and do not allow the flexibility and real-time experimental decision-making essential to many scientific applications. In this Perspective, we highlight that reconfigurability and programmability of microfluidic platforms can support new functionalities that are beyond the reach of current lab-on-a-chip systems. We describe the ideal fully reconfigurable microfluidic device that can change its shape and function dynamically, which would allow researchers to tune a microscale experiment with the capacity to make real-time decisions. We review existing technologies that can dynamically control microscale flows, suggest additional physical mechanisms that could be leveraged towards the goal of reconfigurable microfluidics and highlight the importance of these efforts for the broad scientific community.

4.
Phys Rev Lett ; 126(18): 184502, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34018770

ABSTRACT

We demonstrate theoretically and experimentally that injection of momentum in a region surrounding an object in microscale flow can yield both "cloaking" conditions, where the flow field outside the cloaking region is unaffected by the object, and "shielding" conditions, where the hydrodynamic forces on the object are eliminated. Using field-effect electro-osmosis as a mechanism for injection of momentum, we present a theoretical framework and analytical solutions for a range of geometrical shapes, validate these both numerically and experimentally, and demonstrate the ability to dynamically switch between the different states.

5.
Angew Chem Int Ed Engl ; 59(31): 12894-12899, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32277549

ABSTRACT

We present a new concept for on-chip separation that leverages bidirectional flow, to tune the dispersion regime of molecules and particles. The system can be configured so that low diffusivity species experience a ballistic transport regime and are advected through the chamber, whereas high diffusivity species experience a diffusion dominated regime with zero average velocity and are retained in the chamber. We detail the means of achieving bidirectional electroosmotic flow using an array of alternating current (AC) field-effect electrodes, experimentally demonstrate the separation of particles and antibodies from dyes, and present a theoretical analysis of the system, providing engineering guidelines for its design and operation.

6.
Proc Natl Acad Sci U S A ; 116(21): 10258-10263, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31061121

ABSTRACT

The ability to move fluids at the microscale is at the core of many scientific and technological advancements. Despite its importance, microscale flow control remains highly limited by the use of discrete channels and mechanical valves, and relies on fixed geometries. Here we present an alternative mechanism that leverages localized field-effect electroosmosis to create dynamic flow patterns, allowing fluid manipulation without the use of physical walls. We control a set of gate electrodes embedded in the floor of a fluidic chamber using an ac voltage in sync with an external electric field, creating nonuniform electroosmotic flow distributions. These give rise to a pressure field that drives the flow throughout the chamber. We demonstrate a range of unique flow patterns that can be achieved, including regions of recirculating flow surrounded by quiescent fluid and volumes of complete stagnation within a moving fluid. We also demonstrate the interaction of multiple gate electrodes with an externally generated flow field, allowing spatial modulation of streamlines in real time. Furthermore, we provide a characterization of the system in terms of time response and dielectric breakdown, as well as engineering guidelines for its robust design and operation. We believe that the ability to create tailored microscale flow using solid-state actuation will open the door to entirely new on-chip functionalities.

SELECTION OF CITATIONS
SEARCH DETAIL