Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37445166

ABSTRACT

Austenitic stainless steel D9 is a candidate for Generation IV nuclear reactor structural materials due to its enhanced irradiation tolerance and high-temperature creep strength compared to conventional 300-series stainless steels. But, like other austenitic steels, D9 is susceptible to irradiation-induced clustering of Ni and Si, the mechanism for which is not well understood. This study utilizes atom probe tomography (APT) to characterize the chemistry and morphology of Ni-Si nanoclusters in D9 following neutron or proton irradiation to doses ranging from 5-9 displacements per atom (dpa) and temperatures ranging from 430-683 °C. Nanoclusters form only after neutron irradiation and exhibit classical coarsening with increasing dose and temperature. The nanoclusters have Ni3Si stoichiometry in a Ni core-Si shell structure. This core-shell structure provides insight into a potentially unique nucleation and growth mechanism-nanocluster cores may nucleate through local, spinodal-like compositional fluctuations in Ni, with subsequent growth driven by rapid Si diffusion. This study underscores how APT can shed light on an unusual irradiation-induced nanocluster nucleation mechanism active in the ubiquitous class of austenitic stainless steels.

2.
J Synchrotron Radiat ; 29(Pt 1): 67-79, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34985424

ABSTRACT

Soft X-ray spectromicroscopy at the O K-edge, U N4,5-edges and Ce M4,5-edges has been performed on focused ion beam sections of spent nuclear fuel for the first time, yielding chemical information on the sub-micrometer scale. To analyze these data, a modification to non-negative matrix factorization (NMF) was developed, in which the data are no longer required to be non-negative, but the non-negativity of the spectral components and fit coefficients is largely preserved. The modified NMF method was utilized at the O K-edge to distinguish between two components, one present in the bulk of the sample similar to UO2 and one present at the interface of the sample which is a hyperstoichiometric UO2+x species. The species maps are consistent with a model of a thin layer of UO2+x over the entire sample, which is likely explained by oxidation after focused ion beam (FIB) sectioning. In addition to the uranium oxide bulk of the sample, Ce measurements were also performed to investigate the oxidation state of that fission product, which is the subject of considerable interest. Analysis of the Ce spectra shows that Ce is in a predominantly trivalent state, with a possible contribution from tetravalent Ce. Atom probe analysis was performed to provide confirmation of the presence and localization of Ce in the spent fuel.

3.
Ultramicroscopy ; 220: 113167, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33197698

ABSTRACT

Atom probe tomography (APT), a 3D microscopy technique, has great potential to reveal atomic scale compositional variations, such as those associated with irradiation damage. However, obtaining accurate compositional quantification by APT for high bandgap materials is a longstanding challenge, given the sensitivity to field evaporation parameters and inconsistent behaviors across different oxides. This study investigates the influence of APT laser energy and specimen base temperature on compositional accuracy in single crystal thoria (ThO2). ThO2 has a broad range of applications, including advanced nuclear fuels, sensors, lasers and scintillators, electrodes, catalysis, and photonics and optoelectronics. The expected stoichiometry of ThO2 is achieved at APT base temperature of 24 K and laser energy of 100 pJ. To overcome mass resolution limitations associated with significant thermal tails, Bayesian methods are applied to deconvolute ion identity within the mass spectra. This approach affirms that the parameters chosen are appropriate for APT analysis of ThO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...