Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 40(24): 7291-300, 2001 Jun 19.
Article in English | MEDLINE | ID: mdl-11401577

ABSTRACT

Allium sativum agglutinin (ASAI) is a heterodimeric mannose-specific bulb lectin possessing two polypeptide chains of molecular mass 11.5 and 12.5 kDa. The thermal unfolding of ASAI, characterized by differential scanning calorimetry and circular dichroism, shows it to be highly reversible and can be defined as a two-state process in which the folded dimer is converted directly to the unfolded monomers (A2 if 2U). Its conformational stability has been determined as a function of temperature, GdnCl concentration, and pH using a combination of thermal and isothermal GdnCl-induced unfolding monitored by DSC, far-UV CD, and fluorescence, respectively. Analyses of these data yielded the heat capacity change upon unfolding (DeltaC(p) and also the temperature dependence of the thermodynamic parameters, namely, DeltaG, DeltaH, and DeltaS. The fit of the stability curve to the modified Gibbs-Helmholtz equation provides an estimate of the thermodynamic parameters DeltaH(g), DeltaS(g), and DeltaC(p) as 174.1 kcal x mol(-1), 0.512 kcal x mol(-1) x K(-1), and 3.41 kcal x mol(-1) x K(-1), respectively, at T(g) = 339.4 K. Also, the free energy of unfolding, DeltaG(s), at its temperature of maximum stability (T(s) = 293 K) is 13.13 kcal x mol(-1). Unlike most oligomeric proteins studied so far, the lectin shows excellent agreement between the experimentally determined DeltaC(p) (3.2 +/- 0.28 kcal x mol(-1) x K(-1)) and those evaluated from a calculation of its accessible surface area. This in turn suggests that the protein attains a completely unfolded state irrespective of the method of denaturation. The absence of any folding intermediates suggests the quaternary interactions to be the major contributor to the conformational stability of the protein, which correlates well with its X-ray structure. The small DeltaC(p) for the unfolding of ASAI reflects a relatively small, buried hydrophobic core in the folded dimeric protein.


Subject(s)
Agglutinins/chemistry , Carrier Proteins/chemistry , Garlic/chemistry , Mannose-Binding Lectins , Plant Proteins , Plants, Medicinal , Protein Folding , Calorimetry , Circular Dichroism , Collectins , Cotyledon , Dimerization , Lectins/metabolism , Mannans/metabolism , Models, Chemical , Plant Lectins , Plant Roots/chemistry , Protein Denaturation , Protein Structure, Secondary , Spectrometry, Fluorescence , Thermodynamics
2.
J Biol Chem ; 276(8): 5541-6, 2001 Feb 23.
Article in English | MEDLINE | ID: mdl-11076955

ABSTRACT

The kinetics of the binding of mannooligosaccharides to the heterodimeric lectin from garlic bulbs was studied using surface plasmon resonance. The interaction of the bound lectin immobilized on the sensor chip with a selected group of high mannose oligosaccharides was monitored in real time with the change in response units. This investigation corroborates our earlier study about the special preference of garlic lectin for terminal alpha-1,2-linked mannose residues. An increase in binding propensity can be directly correlated to the addition of alpha-1,2-linked mannose to the mannooligosaccharide at its nonreducing end. Mannononase glycopeptide (Man9GlcNAc2Asn), the highest oligomer studied, exhibited the greatest binding affinity (Ka = 1.2 x 10(6) m(-1) at 25 degrees C). An analysis of these data reveals that the alpha-1,2-linked terminal mannose on the alpha-1,6 arm is the critical determinant in the recognition of mannooligosaccharides by the lectin. The association (k1) and dissociation rate constants (k(-1)) for the binding of Man9GlcNAc2Asn to Allium sativum agglutinin I are 6.1 x 10(4) m(-1) s(-1) and 4.9 x 10(-2) s(-1), respectively, at 25 degrees C. Whereas k1 increases progressively from Man3 to Man7 derivatives, and more dramatically so for Man8 and Man9 derivatives, k(-1) decreases relatively much less gradually from Man3 to Man9 structures. An unprecedented increase in the association rate constant for interaction with Allium sativum agglutinin I with the structure of the oligosaccharide ligand constitutes a significant finding in protein-sugar recognition.


Subject(s)
Agglutinins/metabolism , Hydrogen-Ion Concentration , Mannans/metabolism , Mannose-Binding Lectins , Plant Proteins , Agglutinins/isolation & purification , Calorimetry , Carbohydrate Sequence , Mannans/chemistry , Models, Chemical , Molecular Sequence Data , Protein Binding , Surface Plasmon Resonance/methods
4.
Biochem Biophys Res Commun ; 276(3): 1075-9, 2000 Oct 05.
Article in English | MEDLINE | ID: mdl-11027592

ABSTRACT

Quinoline-containing drugs such as chloroquine and quinine have had a long and successful history in antimalarial chemotherapy. Identification of ferriprotoporphyrin IX ([Fe(III)PPIX], haematin) as the drug receptors for these antimalarials called for investigations of the binding affinity, mode of interaction, and the conditions affecting the interaction. The parameters obtained are significant in recent times with the emergence of chloroquine resistant strains of the malaria parasites. This has underlined the need to unravel the molecular mechanism of their action so as to meet the requirement of an alternative to the existing antimalarial drugs. The isothermal titration calorimetric studies on the interaction of chloroquine with haematin lead us to propose an altered mode of binding. The initial recognition is ionic in nature mediated by the propionyl group of haematin with the quaternary nitrogen on CQ. This ionic interaction induces a conformational change, such as to favour binding of subsequent CQ molecules. On the contrary, conditions emulating the cytosolic environment (pH 7.4 and 150 mM salt) reveal the hydrophobic force to be the sole contributor driving the interaction. Interaction of a carefully selected panel of quinoline antimalarial drugs with monomeric ferriprotoporphyrin IX has also been investigated at pH 5.6 mimicking the acidic environment prevalent in the food vacuoles of parasite, the center of drug activity, which are consistent with their antimalarial activity.


Subject(s)
Antimalarials/metabolism , Chloroquine/analogs & derivatives , Chloroquine/metabolism , Hemin/metabolism , Amodiaquine/chemistry , Amodiaquine/metabolism , Antimalarials/chemistry , Binding Sites , Calorimetry , Chloroquine/chemistry , Hydrogen-Ion Concentration , Mefloquine/chemistry , Mefloquine/metabolism , Octoxynol/pharmacology , Quinidine/chemistry , Quinidine/metabolism , Quinine/chemistry , Quinine/metabolism , Solubility/drug effects , Spectrophotometry, Ultraviolet , Temperature , Thermodynamics , Titrimetry
5.
Biochemistry ; 39(35): 10755-60, 2000 Sep 05.
Article in English | MEDLINE | ID: mdl-10978160

ABSTRACT

The carbohydrate binding specificity of the seed lectin from Artocarpus integrifolia, artocarpin, has been elucidated by the enzyme-linked lectin absorbent assay [Misquith, S., et al (1994) J. Biol. Chem. 269, 30393-30401], wherein it was demonstrated to be a Man/Glc specific lectin with high affinity for the trisaccharide present in the core of all N-linked oligosaccharide chains of glycoproteins. As a consequence of this characterization, the binding epitopes of this trisaccharide, 3, 6-di(alpha-D-mannopyranosyl)-D-mannose, for artocarpin were investigated by isothermal titration calorimetry using its monodeoxy as well as Glc and Gal analogues. The thermodynamic data presented here implicate 2-, 3-, 4-, and 6-hydroxyl groups of the alpha(1-3) Man and alpha(1-6) Man residues, and the 2- and 4-OH groups of the central Man residue, in binding to artocarpin. Nevertheless, alpha(1-3) Man is the primary contributor to the binding affinity, unlike other Man/Glc binding lectins which exhibit a preference for alpha(1-6) Man. In addition, unlike the binding reactions of most lectins reported so far, the interaction of mannotriose involves all of its hydroxyl groups with the combining site of the lectin. Moreover, the free energy and enthalpy contributions to binding of individual hydroxyl groups of the trimannoside estimated from the corresponding monodeoxy analogues show nonlinearity, suggesting differential contributions of the solvent and protein to the thermodynamics of binding of the analogues. Thus, this study not only provides evidence for the extended site recognition of artocarpin for the trimannoside epitope but also suggests that its combining site is best described as a deep cleft as opposed to shallow indentations implicated in other lectins.


Subject(s)
Carrier Proteins/chemistry , Lectins/chemistry , Mannose-Binding Lectins , Mannosides/chemistry , Trisaccharides/chemistry , Binding Sites , Calorimetry/methods , Carbohydrate Sequence , Galactose/chemistry , Glucose/chemistry , Mannose/chemistry , Molecular Sequence Data , Plant Lectins , Protein Binding , Rosales , Thermodynamics , Titrimetry/methods
6.
J Biol Chem ; 274(42): 29694-8, 1999 Oct 15.
Article in English | MEDLINE | ID: mdl-10514441

ABSTRACT

The thermodynamics of binding of various saccharides to artocarpin, from Artocarpus integrifolia seeds, a homotetrameric lectin (M(r) 65, 000) with one binding site per subunit, was determined by isothermal titration calorimetry measurements at 280 and 293 K. The binding enthalpies, DeltaH(b), are the same at both temperatures, and the values range from -10.94 to -47.11 kJ mol(-1). The affinities of artocarpin as obtained from isothermal titration calorimetry are in reasonable agreement with the results obtained by enzyme-linked lectin absorbent essay, which is based on the minimum amount of ligand required to inhibit horseradish peroxidase binding to artocarpin in enzyme-linked lectin absorbent essay (Misquith, S., Rani, P. G., and Surolia, A. (1994) J. Biol. Chem. 269, 30393-30401). The interactions are mainly enthalpically driven and exhibit enthalpy-entropy compensation. The order of binding affinity of artocarpin is as follows: mannotriose>Manalpha3Man>GlcNAc(2)Man(3)>MealphaMan>Man>M analpha6Man> Manalpha2Man>MealphaGlc>Glc, i.e. 7>4>2>1.4>1>0.4>0.3>0.24>0.11. The DeltaH for the interaction of Manalpha3Man, Manalpha6Man, and MealphaMan are similar and 20 kJ mol(-1) lower than that of mannotriose. This indicates that, while Manalpha3Man and Manalpha6Man interact with the lectin exclusively through their nonreducing end monosaccharide with the subsites specific for the alpha1,3 and alpha1,6 arms, the mannotriose interacts with the lectin simultaneously through all three of its mannopyranosyl residues. This study thus underscores the distinction in the recognition of this common oligosaccharide motif in comparison with that displayed by other lectins with related specificity.


Subject(s)
Carbohydrate Metabolism , Carrier Proteins/metabolism , Lectins/metabolism , Mannose-Binding Lectins , Mitogens/metabolism , Plant Lectins , Trisaccharides/metabolism , B-Lymphocytes/cytology , Carbohydrate Conformation , Carbohydrate Sequence , Carbohydrates/chemistry , Molecular Sequence Data , Protein Binding , Thermodynamics
7.
J Mol Biol ; 285(3): 1157-68, 1999 Jan 22.
Article in English | MEDLINE | ID: mdl-9887270

ABSTRACT

A mannose-specific agglutinin, isolated from garlic bulbs, has been crystallized in the presence of a large excess of alpha-d-mannose, in space group C2 and cell dimensions, a=203.24, b=43.78, c=79.27 A, beta=112.4 degrees, with two dimers in the asymmetric unit. X-ray diffraction data were collected up to a nominal resolution of 2.4 A and the structure was solved by molecular replacement. The structure, refined to an R-factor of 22.6 % and an Rfree of 27.8 % reveals a beta-prism II fold, similar to that in the snowdrop lectin, comprising three antiparallel four-stranded beta-sheets arranged as a 12-stranded beta-barrel, with an approximate internal 3-fold symmetry. This agglutinin is, however, a dimer unlike snowdrop lectin which exists as a tetramer, despite a high degree of sequence similarity between them. A comparison of the two structures reveals a few substitutions in the garlic lectin which stabilise it into a dimer and prevent tetramer formation. Three mannose molecules have been identified on each subunit. In addition, electron density is observed for another possible mannose molecule per dimer resulting in a total of seven mannose molecules in each dimer. Although the mannose binding sites and the overall structure are similar in the subunits of snowdrop and garlic lectin, their specificities to glycoproteins such as GP120 vary considerably. These differences appear, in part, to be a direct consequence of the differences in oligomerisation, implying that variation in quaternary association may be a mode of achieving oligosaccharide specificity in bulb lectins.


Subject(s)
Agglutinins/chemistry , Garlic/metabolism , Lectins/chemistry , Plants, Medicinal , Protein Conformation , Amino Acid Sequence , Binding Sites , Carbohydrate Metabolism , Crystallography, X-Ray , Dimerization , Mannose/chemistry , Mannose-Binding Lectins , Models, Molecular , Molecular Sequence Data , Plant Lectins , Plant Proteins/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
8.
J Biol Chem ; 273(10): 5528-35, 1998 Mar 06.
Article in English | MEDLINE | ID: mdl-9488677

ABSTRACT

Two mannose-binding lectins, Allium sativum agglutinin (ASA) I (25 kDa) and ASAIII (48 kDa), from garlic bulbs have been purified by affinity chromatography followed by gel filtration. The subunit structures of these lectins are different, but they display similar sugar specificities. Both ASAI and ASAIII are made up of 12.5- and 11.5-kDa subunits. In addition, a complex (136 kDa) comprising a polypeptide chain of 54 +/- 4 kDa and the subunits of ASAI and ASAIII elutes earlier than these lectins on gel filtration. The 54-kDa subunit is proven to be alliinase, which is known to form a complex with garlic lectins. Constituent subunits of ASAI and ASAIII exhibit the same sequence at their amino termini. ASAI and ASAIII recognize monosaccharides in mannosyl configuration. The potencies of the ligands for ASAs increase in the following order: mannobiose (Manalpha1-3Man) < mannotriose (Manalpha1-6Manalpha1-3Man) approximately mannopentaose << Man9-oligosaccharide. The addition of two GlcNAc residues at the reducing end of mannotriose or mannopentaose enhances their potencies significantly, whereas substitution of both alpha1-3- and alpha1-6-mannosyl residues of mannotriose with GlcNAc at the nonreducing end increases their activity only marginally. The best manno-oligosaccharide ligand is Man9GlcNAc2Asn, which bears several alpha1-2-linked mannose residues. Interaction with glycoproteins suggests that these lectins recognize internal mannose as well as bind to the core pentasaccharide of N-linked glycans even when it is sialylated. The strongest inhibitors are the high mannose-containing glycoproteins, which carry larger glycan chains. Indeed, invertase, which contains 85% of its mannose residues in species larger than Man20GlcNAc, exhibited the highest binding affinity. No other mannose- or mannose/glucose-binding lectin has been shown to display such a specificity.


Subject(s)
Garlic/chemistry , Lectins/metabolism , Mannosides/chemistry , Oligosaccharides/metabolism , Plants, Medicinal , Amino Acid Sequence , Binding Sites , Binding, Competitive/physiology , Carbohydrate Conformation , Carbohydrate Sequence , Carbon-Sulfur Lyases/metabolism , Carrier Proteins/metabolism , Garlic/enzymology , Glycoproteins/metabolism , Glycoproteins/pharmacology , Glycoside Hydrolases/metabolism , Hemagglutination/drug effects , Mannose-Binding Lectins , Molecular Sequence Data , Oligosaccharides/pharmacology , Plant Lectins , Protein Binding , Sequence Analysis , beta-Fructofuranosidase
SELECTION OF CITATIONS
SEARCH DETAIL
...