Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 192: 105446, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32200048

ABSTRACT

BACKGROUND AND OBJECTIVE: Total knee arthroplasty (TKA) is a routine surgery performed to treat patients with severe knee osteoarthritis. The success of a TKA depends strongly on the initial stability of the prosthetic components and its long-term osseointegration due to the optimal distribution of mechanical stresses in the surrounding bones under the effect of the different biomechanical loads applied to the Femur-TKA-Tibia system. The purpose of this study is to analyze the level and the distribution of the induced stresses in a Femur-TKA-Tibia system subjected to combined triaxial forces, which mimic a femoral mechanical shock. METHODS: In this study, complex TKA system implanted in both femoral and tibial bones has been analyzed numerically with a three-dimensional finite-element method. A virtual model is designed to examine in silico the effect of the combined triaxial forces acting on this prosthesis in femoral region. Anatomical three-dimensional finite-element models of both femoral and tibial bones were constructed to calculate the interfacial stresses around the TKA components. The 3D finite-element processing program ABAQUS was used to perform the analysis. RESULTS: The stresses propagated in the bone regions adjacent to the TKA osseointegrated components, and the decreased in their magnitude to the outer region. These stresses reached the highest level in the cortical bone areas that are right next to the proximal upper attachment portions of the TKA osseointegrated components. The magnitude of the stresses in the tibial component is higher than that in the femoral component. Finally, it is very important to emphasize the role of the polyethylene articulating spacer in the shock absorption of bone support sections. Thus, this component should be preserved mechanically from the impact of high shocks in order to maintain healthy TKA systems. CONCLUSIONS: Optimizing TKA model by controlling the biomechanical stresses distributed within its both components and supporting bones is a valid approach to achieving favorable long-term outcomes. The 3D finite-element analysis provides an effective pre-operative method for planning patient-specific TKA prostheses, and for designing future models that preserves the biomechanical function of the Femur-TKA-Tibia system.


Subject(s)
Arthroplasty, Replacement, Knee , Femur , Stress, Mechanical , Tibia , Adult , Finite Element Analysis , Humans , Knee Prosthesis , Male
2.
Mater Sci Eng C Mater Biol Appl ; 33(2): 691-8, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-25427475

ABSTRACT

The human tooth faces different stresses under environments of different loading conditions, these loading produces major factors in weakness of the tooth and bone structure. The need to save natural teeth has prompted the development of novel and complex techniques in endodontology, prosthodontics and periodontology. Despite a poor long-term prognosis and some prejudice to local bone, considerable efforts have been exerted for the realization of these techniques. Nowadays, the 3D finite element analysis (FEA) is one of the more recently used techniques for stress analysis in single human tooth under different loading cases. The von Mises stress distribution indicated that the greatest effort area of tooth lies at the base of crown up to the gingival line with varying intensities in the different loading cases. The highest stress in the cortical bone was predominantly found around the cervical region of the tooth and lowest in the cancellous bone and periodontal ligament (PDL). The PDL is a soft tissue, and it could function as an intermediate cushion element which absorbs the impact force and uniformly transfers the occlusal forces into the surrounding bone.


Subject(s)
Biomechanical Phenomena/physiology , Molar/physiology , Stress, Mechanical , Computer Simulation , Finite Element Analysis , Humans , Models, Biological
3.
Mater Sci Eng C Mater Biol Appl ; 33(1): 543-9, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-25428108

ABSTRACT

In this study, we use the finite element method to analyze the propagation's path of the crack in the orthopedic cement of the total hip replacement. In fact, a small python statement was incorporated with the Abaqus software to do in loop the following operations: extracting the crack propagation direction from the previous study using the maximal circumferential stresses criterion, drawing the new path, meshing and calculating again (stresses and fracture parameters). The loop is broken when the user's desired crack length is reached (number of propagations) or the value of the mode I stress intensity factor is negative. Results show that the crack propagation's path can be influenced by human body posture. The existing of a cavity in the vicinity of the crack can change its propagation path or can absolutely attract it enough to meet it. Crack can propagate in the outward direction (toward the acetabulum bone) and cannot propagate in the opposite direction, the mode I stress intensity factor increases with the crack length and that of mode II vanishes.


Subject(s)
Acetabulum/physiology , Bone Cements/pharmacology , Numerical Analysis, Computer-Assisted , Stress, Mechanical , Acetabulum/drug effects , Humans , Materials Testing , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...