Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 33(17): 2086-95, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25769884

ABSTRACT

Although IgA is the most abundantly produced immunoglobulin in humans, its role in preventing HIV-1 acquisition, which occurs mostly via mucosal routes, remains unclear. In our passive mucosal immunizations of rhesus macaques (RMs), the anti-HIV-1 neutralizing monoclonal antibody (nmAb) HGN194, given either as dimeric IgA1 (dIgA1) or dIgA2 intrarectally (i.r.), protected 83% or 17% of the RMs against i.r. simian-human immunodeficiency virus (SHIV) challenge, respectively. Data from the RV144 trial implied that vaccine-induced plasma IgA counteracted the protective effector mechanisms of IgG1 with the same epitope specificity. We thus hypothesized that mucosal dIgA2 might diminish the protection provided by IgG1 mAbs targeting the same epitope. To test our hypothesis, we administered HGN194 IgG1 intravenously (i.v.) either alone or combined with i.r. HGN194 dIgA2. We enrolled SHIV-exposed, persistently aviremic RMs protected by previously administered nmAbs; RM anti-human IgG responses were undetectable. However, low-level SIV Gag-specific proliferative T-cell responses were found. These animals resemble HIV-exposed, uninfected humans, in which local and systemic cellular immune responses have been observed. HGN194 IgG1 and dIgA2 used alone and the combination of the two neutralized the challenge virus equally well in vitro. All RMs given only i.v. HGN194 IgG1 became infected. In contrast, all RMs given HGN194 IgG1+dIgA2 were completely protected against high-dose i.r. SHIV-1157ipEL-p challenge. These data imply that combining suboptimal defenses at the mucosal and systemic levels can completely prevent virus acquisition. Consequently, active vaccination should focus on defense-in-depth, a strategy that seeks to build up defensive fall-back positions well behind the fortified frontline.


Subject(s)
Antibodies, Monoclonal/administration & dosage , HIV Antibodies/administration & dosage , HIV-1/immunology , Immunization, Passive , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Administration, Intravenous , Administration, Mucosal , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , HIV Antibodies/blood , Humans , Immunity, Cellular , Immunity, Mucosal , Immunoglobulin A/administration & dosage , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Immunoglobulin G/immunology , Macaca mulatta , Mucous Membrane/immunology , RNA, Viral/blood , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/pathogenicity , T-Lymphocytes/immunology
2.
Vaccine ; 32(48): 6527-36, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25245933

ABSTRACT

We sought to test whether vaccine-induced immune responses could protect rhesus macaques (RMs) against upfront heterologous challenges with an R5 simian-human immunodeficiency virus, SHIV-2873Nip. This SHIV strain exhibits many properties of transmitted HIV-1, such as tier 2 phenotype (relatively difficult to neutralize), exclusive CCR5 tropism, and gradual disease progression in infected RMs. Since no human AIDS vaccine recipient is likely to encounter an HIV-1 strain that exactly matches the immunogens, we immunized the RMs with recombinant Env proteins heterologous to the challenge virus. For induction of immune responses against Gag, Tat, and Nef, we explored a strategy of immunization with overlapping synthetic peptides (OSP). The immune responses against Gag and Tat were finally boosted with recombinant proteins. The vaccinees and a group of ten control animals were given five low-dose intrarectal (i.r.) challenges with SHIV-2873Nip. All controls and seven out of eight vaccinees became systemically infected; there was no significant difference in viremia levels of vaccinees vs. controls. Prevention of viremia was observed in one vaccinee which showed strong boosting of virus-specific cellular immunity during virus exposures. The protected animal showed no challenge virus-specific neutralizing antibodies in the TZM-bl or A3R5 cell-based assays and had low-level ADCC activity after the virus exposures. Microarray data strongly supported a role for cellular immunity in the protected animal. Our study represents a case of protection against heterologous tier 2 SHIV-C by vaccine-induced, virus-specific cellular immune responses.


Subject(s)
AIDS Vaccines/immunology , Immunity, Mucosal , Vaccination/methods , Animals , Antibodies, Neutralizing/blood , Gene Products, gag/immunology , Gene Products, nef/immunology , HIV Antibodies/blood , HIV Envelope Protein gp160/immunology , HIV-1 , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , Recombinant Proteins/immunology , Simian Immunodeficiency Virus , Vaccines, Synthetic/immunology , Viremia/prevention & control , tat Gene Products, Human Immunodeficiency Virus/immunology
3.
Retrovirology ; 10: 63, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23800339

ABSTRACT

BACKGROUND: We addressed the question whether live-virus challenges could alter vaccine-induced antibody (Ab) responses in vaccinated rhesus macaques (RMs) that completely resisted repeated exposures to R5-tropic simian-human immunodeficiency viruses encoding heterologous HIV clade C envelopes (SHIV-Cs). RESULTS: We examined the Ab responses in aviremic RMs that had been immunized with a multi-component protein vaccine (multimeric HIV-1 gp160, HIV-1 Tat and SIV Gag-Pol particles) and compared anti-Env plasma Ab titers before and after repeated live-virus exposures. Although no viremia was ever detected in these animals, they showed significant increases in anti-gp140 Ab titers after they had encountered live SHIVs. When we investigated the dynamics of anti-Env Ab titers during the immunization and challenge phases further, we detected the expected, vaccine-induced increases of Ab responses about two weeks after the last protein immunization. Remarkably, these titers kept rising during the repeated virus challenges, although no viremia resulted. In contrast, in vaccinated RMs that were not exposed to virus, anti-gp140 Ab titers declined after the peak seen two weeks after the last immunization. These data suggest boosting of pre-existing, vaccine-induced Ab responses as a consequence of repeated live-virus exposures. Next, we screened polyclonal plasma samples from two of the completely protected vaccinees by peptide phage display and designed a strategy that selects for recombinant phages recognized only by Abs present after - but not before - any SHIV challenge. With this "subtractive biopanning" approach, we isolated V3 mimotopes that were only recognized after the animals had been exposed to live virus. By detailed epitope mapping of such anti-V3 Ab responses, we showed that the challenges not only boosted pre-existing binding and neutralizing Ab titers, but also induced Abs targeting neo-antigens presented by the heterologous challenge virus. CONCLUSIONS: Anti-Env Ab responses induced by recombinant protein vaccination were altered by the multiple, live SHIV challenges in vaccinees that had no detectable viral loads. These data may have implications for the interpretation of "vaccine only" responses in clinical vaccine trials.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/blood , HIV-1/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/administration & dosage , Animals , Humans , Macaca mulatta , SAIDS Vaccines/administration & dosage , Viremia/prevention & control
4.
J Virol ; 87(8): 4403-16, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23388727

ABSTRACT

Identifying immune correlates of protection is important to develop vaccines against infectious diseases. We designed a novel, universally applicable strategy to profile the antibody (Ab) repertoire of protected vaccine recipients, using recombinant phages encoding random peptide libraries. The new approach, termed "protection-linked (PL) biopanning," probes the Ab paratopes of protected vaccinees versus those with vaccine failure. As proof of concept, we screened plasma samples from vaccinated rhesus macaques (RMs) that had completely resisted multiple mucosal challenges with R5-tropic simian-human immunodeficiency viruses (SHIVs). The animals had been immunized with a multicomponent vaccine (multimeric HIV-1 gp160, HIV-1 Tat, and SIV Gag-Pol particles). After PL biopanning, we analyzed the phagotopes selected for amino acid homologies; in addition to the expected Env mimotopes, one recurring motif reflected the neutralizing Ab epitope at the N terminus (NT) of HIV-1 Tat. Subsequent binding and functional assays indicated that anti-Tat NT Abs were present only in completely or partially protected RMs; peak viremia of the latter was inversely correlated with anti-Tat NT Ab titers. In contrast, highly viremic, unvaccinated controls did not develop detectable Abs against the same epitope. Based upon the protective effect observed in vivo, we suggest that Tat should be included in multicomponent HIV-1 vaccines. Our data highlight the power of the new PL-biopanning strategy to identify Ab responses with significant association to vaccine protection, regardless of the mechanism(s) or targets of the protective Abs. PL biopanning is also unbiased with regard to pathogens or disease model, making it a universal tool.


Subject(s)
AIDS Vaccines/immunology , Antibodies/blood , Antigens, Viral/immunology , Epitopes/immunology , SAIDS Vaccines/immunology , AIDS Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/blood , Gene Products, tat/immunology , HIV-1/immunology , Immunologic Techniques/methods , Macaca mulatta , Peptide Library , SAIDS Vaccines/administration & dosage , Simian Immunodeficiency Virus/immunology
5.
Infect Genet Evol ; 11(8): 1940-50, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21889617

ABSTRACT

Virus receptors and their expression patterns on the cell surface determine the cell tropism of the virus, host susceptibility and the pathogenesis of the infection. Feline thiamine transport protein 1 (fTHTR1) has been identified as the receptor for feline leukemia virus (FeLV) A. The goal of the present study was to develop a quantitative, TaqMan real-time PCR assay to investigate fTHTR1 mRNA expression in tissues of uninfected and FeLV-infected cats, cats of different ages, in tumor tissues and leukocyte subsets. Moreover, the receptor was molecularly characterized in different feline species. fTHTR1 mRNA expression was detected in all 30 feline tissues investigated, oral mucosa scrapings and blood. Importantly, identification of significant differences in fTHTR1 expression relied on normalization with an appropriate reference gene. The lowest levels were found in the blood, whereas high levels were measured in the oral mucosa, salivary glands and the musculature. In the blood, T lymphocytes showed significantly higher fTHTR1 mRNA expression levels than neutrophil granulocytes. In vitro activation of peripheral blood mononuclear cells with concanavalin A alone or followed by interleukin-2 led to a transient increase of fTHTR1 mRNA expression. In the blood, but not in the examined tissues, FeLV-infected cats tended to have lower fTHTR1 mRNA levels than uninfected cats. The fTHTR1 mRNA levels were not significantly different between tissues with lymphomas and the corresponding non-neoplastic tissues. fTHTR1 was highly conserved among different feline species (Iberian lynx, Asiatic and Indian lion, European wildcat, jaguarundi, domestic cat). In conclusion, while ubiquitous fTHTR1 mRNA expression corresponded to the broad target tissue range of FeLV, particularly high fTHTR1 levels were found at sites of virus entry and shedding. The differential susceptibility of different species to FeLV could not be attributed to variations in the fTHTR1 sequence.


Subject(s)
Felidae/virology , Leukemia Virus, Feline , Membrane Transport Proteins/genetics , Receptors, Virus/genetics , Animals , Cats , Felidae/metabolism , Membrane Transport Proteins/metabolism , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Virus/metabolism , Retroviridae Infections/veterinary , Retroviridae Infections/virology , Tissue Distribution , Tumor Virus Infections/veterinary , Tumor Virus Infections/virology , Viral Load , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL
...