Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003222

ABSTRACT

The distinct structure of cationic organic compounds plays a pivotal role in enhancing their water solubility, which in turn influences their bioavailability. A representative of these compounds, which contains a delocalized charge, is 5-amino-2-(5-amino-3-methyl-1,2-oxazol-4-yl)-3-methyl-2,3-dihydro-1,3,4-oxadiazol-2-ylium bromide (ED). The high-water solubility of ED obviates the need for potentially harmful solvents during in vitro testing. The antibacterial and antifungal activities of the ED compound were assessed in vitro using the microtiter plate method and a biocellulose-based biofilm model. Additionally, its cytotoxic effects on wound bed fibroblasts and keratinocytes were examined. The antistaphylococcal activity of ED was also evaluated using an in vivo larvae model of Galleria mellonella. Results indicated that ED was more effective against Gram-positive bacteria than Gram-negative ones, exhibiting bactericidal properties. Furthermore, ED demonstrated greater efficacy against biofilms formed by Gram-positive bacteria. At bactericidal concentrations, ED was non-cytotoxic to fibroblasts and keratinocytes. In in vivo tests, ED was non-toxic to the larvae. When co-injected with a high load of S. aureus, it reduced the average larval mortality by approximately 40%. These findings suggest that ED holds promise for further evaluation as a potential treatment for biofilm-based wound infections, especially those caused by Gram-positive pathogens like S. aureus.


Subject(s)
Anti-Infective Agents , Staphylococcus aureus , Animals , Water , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Larva/microbiology , Gram-Positive Bacteria , Microbial Sensitivity Tests , Biofilms
2.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769319

ABSTRACT

The microbial, biofilm-based infections of chronic wounds are one of the major challenges of contemporary medicine. The use of topically administered antiseptic agents is essential to treat wound-infecting microorganisms. Due to observed microbial tolerance/resistance against specific clinically-used antiseptics, the search for new, efficient agents is of pivotal meaning. Therefore, in this work, 15 isoxazole derivatives were scrutinized against leading biofilm wound pathogens Staphylococcus aureus and Pseudomonas aeruginosa, and against Candida albicans fungus. For this purpose, the minimal inhibitory concentration, biofilm reduction in microtitrate plates, modified disk diffusion methods and antibiofilm dressing activity measurement methods were applied. Moreover, the cytotoxicity and cytocompatibility of derivatives was tested toward wound bed-forming cells, referred to as fibroblasts, using normative methods. Obtained results revealed that all isoxazole derivatives displayed antimicrobial activity and low cytotoxic effect, but antimicrobial activity of two derivatives, 2-(cyclohexylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB9) and 2-(benzylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB10), was noticeably higher compared to the other compounds analyzed, especially PUB9 with regard to Staphylococcus aureus, with a minimal inhibitory concentration more than x1000 lower compared to the remaining derivatives. The PUB9 and PUB10 derivatives were able to reduce more than 90% of biofilm-forming cells, regardless of the species, displaying at the same time none (PUB9) or moderate (PUB10) cytotoxicity against fibroblasts and high (PUB9) or moderate (PUB10) cytocompatibility against these wound cells. Therefore, taking into consideration the clinical demand for new antiseptic agents for non-healing wound treatment, PUB9 seems to be a promising candidate to be further tested in advanced animal models and later, if satisfactory results are obtained, in the clinical setting.


Subject(s)
Anti-Infective Agents, Local , Isoxazoles , Animals , Isoxazoles/pharmacology , Biofilms , Anti-Infective Agents, Local/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus , Cell Line , Fibroblasts , Oxazoles/pharmacology , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa
3.
Molecules ; 27(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36080386

ABSTRACT

The hybrid peptides consisting of α and ß-amino acids show great promise as peptidomimetics that can be used as therapeutic agents. Therefore, the development of new unnatural amino acids and the methods of their incorporation into the peptide chain is an important task. Here, we described our investigation of the possibility of 5-amino-3-methyl-isoxazole-4-carboxylic acid (AMIA) application in the solid phase peptide synthesis. This new unnatural ß-amino acid, presenting various biological activities, was successfully coupled to a resin-bound peptide using different reaction conditions, including classical and ultrasonic agitated solid-phase synthesis. All the synthesized compounds were characterized by tandem mass spectrometry. The obtained results present the possibility of the application of this ß-amino acid in the synthesis of a new class of bioactive peptides.


Subject(s)
Amino Acids , Solid-Phase Synthesis Techniques , Amino Acids/chemistry , Carboxylic Acids , Isoxazoles , Peptides/chemistry , Solid-Phase Synthesis Techniques/methods
4.
Molecules ; 26(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467741

ABSTRACT

Heterocyclic moieties, especially five and six-membered rings containing nitrogen, oxygen or sulfur atoms, are broadly distributed in nature. Among them, synthetic and natural alike are pharmacologically active compounds and have always been at the forefront of attention due to their pharmacological properties. Heterocycles can be divided into different groups based on the presence of characteristic structural motifs. The presence of ß-amino acid and heterocyclic core in one compound is very interesting; additionally, it very often plays a vital role in their biological activity. Usually, such compounds are not considered to be chemicals containing a ß-amino acid motif; however, considering them as this class of compounds may open new routes of their preparation and application as new drug precursors or even drugs. The possibility of their application as nonproteinogenic amino acid residues in peptide or peptide derivatives synthesis to prepare a new class of compounds is also promising. This review highlights the actual state of knowledge about ß-amino acid moiety-containing heterocycles presenting antiviral, anti-inflammatory, antibacterial compounds, anaplastic lymphoma kinase (ALK) inhibitors, as well as agonist and antagonists of the receptors.


Subject(s)
Amino Acids/chemistry , Amino Acids/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans
5.
RSC Adv ; 11(47): 29668-29674, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-35479548

ABSTRACT

Herein we present a synthesis and characterization of a new and unique low-weight heterocyclic compound 5-amino-2-(5-amino-3-methyl-1,2-oxazol-4-yl)-3-methyl-2,3-dihydro-1,3,4-oxadiazol-2-ylium bromide with the unusual electron charge delocalization owing the local positive charge at the carbon atom of oxadiazole moiety. X-ray single crystal of C7H10N5O2·Br- showed the molecule crystalized in monoclinic, space group P21/c. Both five membered rings are planar and twisted forming the ring motif with the counter ion where H⋯Br interactions are one of the dominant. The presented compound is characterized by high ionization efficiency in ESI-MS mode and undergoes dissociation within oxadiazole moiety under ESI-MS/MS conditions even under low collision energies. The presented compound is an interesting example of heterocyclic stable carbocation which may serve as a new lead structure.

6.
Molecules ; 23(10)2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30360408

ABSTRACT

In this review, we present reports on the immunoregulatory properties of isoxazole derivatives classified into several categories, such as immunosuppressive, anti-inflammatory, immunoregulatory, and immunostimulatory compounds. The compounds were tested in various models using resident cells from rodents and humans, cell lines, and experimental animal disease models corresponding to human clinical situations. Beneficial features of the described isoxazole derivatives include low toxicity and good bioactivity at low doses. In a majority of studies, the activities of investigated compounds were comparable or even higher than registered reference drugs. Whenever possible, a plausible mechanism of action of the investigated compounds and their potential therapeutic utility were proposed. Among the described compounds, particular attention was paid to the class of immune stimulators with a potential application in chemotherapy patients.


Subject(s)
Immunomodulation/drug effects , Isoxazoles/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Isoxazoles/chemistry , Isoxazoles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...