Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Contam Hydrol ; 258: 104241, 2023 09.
Article in English | MEDLINE | ID: mdl-37690392

ABSTRACT

The application of the 222Radon (Rn) deficit technique using subsurface soil gas probes for the identification and quantification of light non-aqueous phase liquids (LNAPL) has provided positive outcomes in recent years. This study presents an alternative method for applying this technique in the headspace of groundwater monitoring wells. The developed protocol, designed for groundwater monitoring wells with a portion of their screen in the vadose zone, is based on the use of portable equipment that allows rapid measurement of the Rn soil gas activity in the vadose zone close to the water table (i.e., smear zone) where LNAPL is typically expected. The paper first describes the step-by-step procedure to be followed for the application of this method. Then, a preliminary assessment of the potential of the method was carried out at two Italian sites characterized by accidental gasoline and diesel spills into the subsurface from underground storage tanks. Although the number of tests conducted does not allow for definitive conclusions, the results obtained suggest that, from a qualitative point of view, Rn monitoring in the headspace of monitoring wells is a promising, fast, and minimally invasive screening method that could also potentially reduce the costs associated with field data acquisition. This method proves to be suitable for detecting the presence of LNAPL in both the mobile and residual phases with results consistent with the other lines of evidence available at the sites, such as groundwater and soil gas monitoring. Future efforts should be directed toward evaluating the accuracy of this method for a quantitative assessment of residual LNAPL saturations.


Subject(s)
Groundwater , Radon , Soil Pollutants , Radon/analysis , Soil , Water Wells , Soil Pollutants/analysis
2.
J Contam Hydrol ; 257: 104204, 2023 07.
Article in English | MEDLINE | ID: mdl-37301040

ABSTRACT

The degradation of trichloroethylene (TCE) vapors by zero-valent Iron-Copper (Fe-Cu) and Iron-Nickel (Fe-Ni) bimetals with 1%, 5% and 20% weight content (%wt) of Cu or Ni was tested in anaerobic batch vapor systems carried out at ambient room temperature (20 ± 2 °C) under partially saturated conditions. The concentrations of TCE and byproducts were determined at discrete reaction time intervals (4 h-7 days) by analyzing the headspace vapors. In all the experiments, up to 99.9% degradation of TCE in the gas phase was achieved after 2-4 days with zero-order TCE degradation kinetic constants in the range of 134-332 g mair-3d-1. Fe-Ni showed a higher reactivity towards TCE vapors compared to Fe-Cu, with up to 99.9% TCE dechlorination after 2 days of reaction, i.e., significantly higher than zero-valent iron alone that in previous studies was found to achieve comparable TCE degradation after minimum 2 weeks of reaction. The only detectable byproducts of the reactions were C3-C6 hydrocarbons. Neither vinyl chloride or dichloroethylene peaks were detected in the tested conditions above their method quantification limits that were in the order of 0.01 g mair-3. In view of using the tested bimetals in horizontal permeable reactive barriers (HPRBs) placed in the unsaturated zone to treat chlorinated solvent vapors emitted from contaminated groundwater, the experimental results obtained were integrated into a simple analytical model to simulate the reactive transport of vapors through the barrier. It was found that an HPRB of 20 cm could be potentially effective to ensure TCE vapors reduction.


Subject(s)
Trichloroethylene , Water Pollutants, Chemical , Copper , Solvents , Iron
3.
Sci Total Environ ; 875: 162619, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36878290

ABSTRACT

The Radon (Rn) deficit technique is a rapid, low-cost, and non-invasive method to identify and quantify light non-aqueous phase liquids (LNAPL) in the soil. LNAPL saturation is typically estimated from Rn deficit using Rn partition coefficients, assuming equilibrium conditions. This work examines the applicability of this method in the presence of local advective fluxes that can be generated by groundwater fluctuations or biodegradation processes in the source zone. To this end, a one-dimensional analytical model was developed to simulate the steady-state diffusive-advective transport of soil gas Rn in the presence of LNAPL. The analytical solution was first validated against an existing numerical model adapted to include advection. Then a series of simulations to study the effect of advection on Rn profiles were carried out. It was found that in high-permeability soils (such as sandy soils), advective phenomena can significantly affect Rn deficit curves in the subsurface compared with those expected, assuming either equilibrium conditions or a diffusion-dominated transport. Namely, in the presence of pressure gradients generated by groundwater fluctuations, applying the traditional Rn deficit technique (assuming equilibrium conditions) can lead to an underestimation of LNAPL saturation. Furthermore, in the presence of methanogenesis processes (e.g., in the case of a fresh LNAPL of petroleum hydrocarbons), local advective fluxes can be expected above the source zone. In such cases, Rn concentrations above the source zone can be higher than those above background areas without advective phenomena, resulting in Rn deficits higher than 1 (i.e., Rn excess), and thus leading to a wrong interpretation regarding the presence of LNAPL in the subsurface if advection is not considered. Overall, the results obtained suggest that advection should be considered in the presence of pressure gradients in the subsurface to ensure an effective application of the soil gas Rn-deficit technique for quantitative estimation of LNAPL saturation.

4.
Environ Sci Technol ; 56(12): 7810-7819, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35537062

ABSTRACT

The use of low-density polyethylene (PE) sheets as equilibrium passive soil gas samplers to quantify volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, and xylenes, and chlorinated solvents (e.g., trichloroethene and tetrachloroethene) in unsaturated subsurface environments was evaluated via modeling and benchtop testing. Two methods were devised to quantify such VOCs in PE. Key chemical properties, including PE-water (KPEw) and PE-air (KPEa) partition coefficients and diffusivities in the PE (Dpe), were determined. These KPEw, KPEa, and Dpe values were consistent with extrapolations of data based on larger compounds. Using these parameter values, field equilibration times of less than 1 day were estimated for such VOCs when using 70-100 µm thick PE sheets. Further, benchtop batch tests carried out in jars filled with VOC-contaminated soils, after 1 or 2 days, showed concentrations in soil air deduced from PE that were consistent with concentrations deduced by analyzing either water or headspace gases recovered from the same tests. Thus, PE-based measurements may overcome inaccuracies from using total soil concentrations and equilibrium partitioning models that may overestimate vapor phase concentrations up to 2 orders of magnitude.


Subject(s)
Polyethylene , Volatile Organic Compounds , Environmental Monitoring/methods , Gases , Polyethylene/chemistry , Soil , Volatile Organic Compounds/chemistry , Water/chemistry
5.
Sci Total Environ ; 806(Pt 2): 150593, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34592297

ABSTRACT

In the last decades radon (Rn) has been widely proposed as a naturally occurring tracer for non-aqueous phase liquids (NAPL) in the soil. This work examines the feasibility of using soil gas data collected at some distance from the source zone for the application of the Rn deficit technique for the identification and quantification of NAPL contamination. To this end, we used a steady-state 1-D analytical solution that is based on a 3-layer model that allows to simulate the transport and distribution of Rn in the source zone, capillary fringe and overlying unsaturated soil. The analytical solution was first validated against a more detailed numerical model available in the literature. Then, a series of simulations were carried out to evaluate the vertical concentration profiles of Rn in soil gas above the source zone and in background location not impacted by NAPL. Simulation results showed that the parameters that most influence the migration and distribution of Rn in the subsurface are the distance of the soil gas probe from the source zone and, to a lower extent, the type of contamination (e.g. diesel or gasoline) and the soil type. On the basis of these results, we developed some easy-to-use nomographs to estimate the residual NAPL phase based on the observed radon deficit in soil gas and on the probe to source distance and soil and NAPL characteristics. According to the obtained results, the radon deficit technique results a feasible method for a qualitative identification of residual NAPL when radon in soil gas is measured at distances lower than 2 m from the contaminated zone. However, for an accurate quantitative estimation of the NAPL phase content, soil gas probes should be preferably located at distances lower than 1 m from the source zone.


Subject(s)
Radon , Soil Pollutants , Water Pollutants, Chemical , Gasoline , Radon/analysis , Soil , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
6.
J Contam Hydrol ; 241: 103807, 2021 08.
Article in English | MEDLINE | ID: mdl-33838564

ABSTRACT

Rates of natural source zone depletion (NSZD) are increasingly being used to aid remedial decision making and light non-aqueous phase liquid (LNAPL) longevity estimates at petroleum release sites. Current NSZD estimate methods, based on analyses of carbon dioxide (CO2) and oxygen (O2) soil-gas concentration gradients ("gradient method") assume linear concentration profiles with depth. This assumption can underestimate the concentration gradients especially above LNAPL sources that are typically characterized by curvilinear or semi-curvilinear O2 and CO2 concentration profiles. In this work, we proposed a new method that relies on calculating the O2 and CO2 concentration gradient using a first-order reaction model. The method requires an estimate of the diffusive reaction length that can be easily derived from soil-gas concentration data. A simple step-by-step guide for applying the new method is provided. Nomographs were also developed to facilitate method application. Application of the nomographs using field data from published literature showed that NSZD rates could be underestimated by nearly an order of magnitude if reactivity in the vadose zone is not accounted for. The new method helps refine NSZD rates estimation and improve risk-based decision making at certain petroleum contaminated sites.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Carbon Dioxide/analysis , Diffusion , Hydrocarbons , Oxygen , Soil , Soil Pollutants/analysis
7.
J Contam Hydrol ; 234: 103687, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32717569

ABSTRACT

Chlorinated solvents are extensively used in many activities and hence in the past decades impacted a large number of sites. The presence of these contaminants in groundwater is challenging particularly for the management of the vapor intrusion pathway. In this work we examine the potential feasibility of using horizontal permeable reactive barriers (HPRBs) placed in the unsaturated zone to treat chlorinated solvent vapors emitted from groundwater. Zero-valent iron (ZVI) powders, partially saturated with water and characterized by different specific surface areas (SSA), were tested, alone or mixed with sand, in lab-scale batch reactors using TCE as model compound. Depending on the type of iron powder used, a reduction of TCE concentration in the vapor phase from approximately 35% up to 99% was observed after 3 weeks of treatment. The best performance in terms of TCE reduction was obtained using the ZVI characterized by the intermediated values of the specific surface area (SSA). This finding, which is in contrast with the results generally observed in in aqueous solutions, was tentatively attributed to a non-selective higher reactivity of the fine-grained iron samples with water and dissolved oxygen (with a consequent iron passivation) or to the occurrence of a diffusion-limited reaction kinetics. Based on the first-order kinetic degradation rate constants estimated from the experimental data, a horizontal barrier of 1 m containing ZVI or a mixture of ZVI and sand can potentially lead to an attenuation of TCE vapors over 99%.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Iron , Solvents , Water Pollutants, Chemical/analysis
8.
Environ Sci Pollut Res Int ; 27(18): 22225-22234, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32146675

ABSTRACT

In this study, we investigate the performance of a Fenton-like process carried out adding as amendments humic acids extracted from compost obtained from organic wastes. Namely, Fenton-like lab-scale tests with different dosages of the extracted humic acids and traditional stabilizing agent (KH2PO4) were performed on a diesel-contaminated soil collected in a former gasoline station. The performed tests showed a beneficial effect of the extracted humic acids on the hydrogen peroxide stability. Namely, the H2O2 lifetime in the tests carried out without the addition of any amendments proved to be quite limited, resulting equal to around 1 h. The adoption of the extracted humic acids alone entailed a limited increase of the hydrogen peroxide stability that anyhow was detected in solution for 24 h using 10 g/L of extracted HA. When the humic acids (10 g/L) were used in combination with KH2PO4 (8.2 g/L), the hydrogen peroxide lifetime increased up to around 150 h. A beneficial effect of the humic acids extracted from compost for a Fenton-like process was also observed in terms of diesel removal. Namely, without any amendment, a contaminant removal of around 55% was observed. Using KH2PO4 or HA alone, the contaminant removal raised up to around 75% while using the traditional stabilizer together with the humic acids extracted from compost, it was possible to remove up to 90% of the initial diesel content of the soil.


Subject(s)
Composting , Soil Pollutants/analysis , Humic Substances/analysis , Hydrogen Peroxide , Soil
9.
Sci Total Environ ; 647: 682-689, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30092524

ABSTRACT

The reduction of trichloroethylene (TCE) in gas phase by different types of granular zero-valent iron (Fe0) was examined in anaerobic batch vapor systems performed at room temperature. Concentrations of TCE and byproducts were determined at discrete time intervals by analysis of the headspace vapors. Depending on the type of iron used, reductions of TCE gas concentration from 35% up to 99% were observed for treatments of 6 weeks. In line with other experimental studies performed with aqueous solutions, the particle size was found to play a key role in the reactivity of the iron. Namely an increase of the TCE removal up to almost 3 times was observed using iron powders with particle size lower than 425 µm compared to iron powders with particle size lower than 850 µm. The manufacturing process of the iron powder was instead found to play only a limited role. Namely, no significant differences were observed in the TCE reduction by Fe0 obtained using an iron powder attained by water atomization and sieving compared to the removal achieved using an iron powder subjected to a further annealing processes to reduce the content of oxides. Conversely, the pretreatment of the iron powder with HCl was found to enhance the reactivity of the iron. In particular, by washing the iron powder of 425 µm with HCl acid 0.1 M the reduction of TCE after 6 weeks of treatment increase from approximately 80% for the as received material to >99% for the pretreated iron powder. We also performed tests at different humidity of the iron observing that not statistical differences were obtained using a water content of 10% or 50% by weight. In all the experiments, the only detectable byproducts of the reactions were C4-C6 alkenes and alkanes that can be attributed to a hydrogenation of the CCl bond.

10.
Sci Total Environ ; 619-620: 1366-1374, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29734614

ABSTRACT

The Fenton process is a well known treatment that proved to be effective for the remediation of sites contaminated by a wide range of organic pollutants. Its application to soil-water systems typically requires the addition of a stabilizer, in order to increase the H2O2 lifetime and thus the radius of influence of the treatment, and a chelating agent, aimed to extract and maintain in solution the iron present in the soil. However, as the use of these compounds has been debated for their environmental impact, efforts have been placed to test new "greener" amendments. Namely, in line with the concept of circular economy introduced by the European Council, in this study we have tested the use of humic acids extracted from compost as amendment in a Fenton-like process. These substances are of potential interest as can form complexes with metal ions and act as sorbents for hydrophobic organic compounds. Fenton-like lab-scale tests with the extracted humic acids were performed on a soil-water system artificially contaminated by chlorophenol. The obtained results were compared with those achieved applying commercial humic acids or traditional amendments (i.e. KH2PO4 or EDTA) used as reference. The humic acids extracted from compost allowed to achieve a H2O2 lifetime close to the one obtained with traditional stabilizing agent; besides, humic acids proved also effective in removing chlorophenol, with performance close to the one achieved using a traditional chelating agent. These findings hence suggest that the use of the humic acids extracted from wastes in a Fenton-like process could allow to replace at the same time the H2O2 stabilizer and the chelating agent.

11.
Chemosphere ; 200: 227-236, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29494903

ABSTRACT

Laboratory and field studies were used to evaluate the performance of low-density polyethylene (PE) passive samplers for assessing the freely dissolved concentrations of DDT and its degradates (DDD and DDE, together referred to as DDx) in an Italian lake environment. We tested commercially available 25 µm thick PE sheets as well as specially synthesized, 10 µm thick PE films which equilibrated with their surroundings more quickly. We measured PE-water partitioning coefficients (Kpew) of the 10 µm thick PE films, finding good correspondence with previously reported values for thicker PE. Use of the 10 µm PE for ex situ sampling of a lake sediment containing DDx in laboratory tumbling experiments showed repeatability of ±15% (= standard deviation/mean). Next, we deployed replicate 10 µm and 25 µm PE samplers (N = 4 for 10 d and for 30 d) in the water and sediment of a lake located in northern Italy; the results showed dissolved DDx concentrations in the picogram/L range in porewater and the bottom water. Values deduced from 10 µm thick PE films compared well (95% of all comparison pairs matched within a factor of 5) with those obtained using PE films of 25 µm thickness when dissolved DDx concentrations were estimated using performance reference compound (PRC) corrections, whether left at the bed-water interface for 10 or 30 days. These results demonstrated the potential of this sampling method to provide estimation of the truly dissolved DDx concentrations, and thereby the mobile and bio-available fractions in both surface waters and sediment beds.


Subject(s)
DDT/analysis , Environmental Monitoring/methods , Environmental Restoration and Remediation , Geologic Sediments/analysis , Membranes, Artificial , Polyethylene/chemistry , Water Pollutants, Chemical/analysis , DDT/chemistry , Geologic Sediments/chemistry , Italy , Lakes , Water Pollutants, Chemical/chemistry
12.
Sci Total Environ ; 619-620: 470-479, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29156267

ABSTRACT

In this work, we introduce a screening method for the evaluation of the natural attenuation rates in the subsurface at sites contaminated by petroleum hydrocarbons. The method is based on the combination of the data obtained from standard source characterization with dynamic flux chambers measurements. The natural attenuation rates are calculated as difference between the flux of contaminants estimated with a non-reactive diffusive model starting from the concentrations of the contaminants detected in the source (soil and/or groundwater) and the effective emission rate of the contaminants measured using dynamic flux chambers installed at ground level. The reliability of this approach was tested in a contaminated site characterized by the presence of BTEX in soil and groundwater. Namely, the BTEX emission rates from the subsurface were measured in 4 seasonal campaigns using dynamic flux chambers installed in 14 sampling points. The comparison of measured fluxes with those predicted using a non-reactive diffusive model, starting from the source concentrations, showed that, in line with other recent studies, the modelling approach can overestimate the expected outdoor concentration of petroleum hydrocarbons even up to 4 orders of magnitude. On the other hand, by coupling the measured data with the fluxes estimated with the diffusive non-reactive model, it was possible to perform a mass balance to evaluate the natural attenuation loss rates of petroleum hydrocarbons during the migration from the source to ground level. Based on this comparison, the estimated BTEX loss rates in the test site were up to almost 0.5kg/year/m2. These rates are in line with the values reported in the recent literature for natural source zone depletion. In short, the method presented in this work can represent an easy-to-use and cost-effective option that can provide a further line of evidence of natural attenuation rates expected at contaminated sites.

13.
Chemosphere ; 191: 580-588, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29073567

ABSTRACT

Fenton-like treatment (FLT) is an ISCO technique relying on the iron-induced H2O2 activation in the presence of additives aimed at increasing the oxidant lifetime and maximizing iron solubility under natural soil pH conditions. The efficacy of FLT in the clean-up of hydrocarbon-contaminated soils is well established at the field-scale. However, a better assessment of the impact of the FLT on density, diversity and activity of the indigenous soil microbiota, might provide further insights into an optimal combination between FLT and in-situ bioremediation (ISB). The aim of this work was to assess the impacts of FLT on the microbial community of a diesel-contaminated soil collected nearby a gasoline station. Different FLT conditions were tested by varying either the H2O2 concentrations (2 and 6%) or the oxidant application mode (single or double dosage). The impact of these treatments on the indigenous microbial community was assessed immediately after the Fenton-like treatment and after 30, 60 and 90 d and compared with enhanced natural attenuation (ENA). After FLT, a dramatic decrease in bacterial density, diversity and functionality was evident. Although in microcosms with double dosing at 2% H2O2 a delayed recovery of the indigenous microbiota was observed as compared to those subjected to single oxidant dose, after 60 d incubation the respiration rate increased from 0.036 to 0.256 µg CCO2 g-1soil h-1. Irrespective of the oxidant dose, best degradation results after 90 d incubation (around 80%) were observed with combined FLT, relying on double oxidant addition, and bioremediation.


Subject(s)
Biodegradation, Environmental , Gasoline/microbiology , Hydrogen Peroxide/pharmacology , Soil Microbiology/standards , Soil Pollutants , Bacteria/metabolism , Biodegradation, Environmental/drug effects , Hydrocarbons/metabolism , Iron/metabolism , Soil/chemistry , Soil Pollutants/chemistry , Soil Pollutants/metabolism
14.
J Contam Hydrol ; 197: 50-61, 2017 02.
Article in English | MEDLINE | ID: mdl-28109630

ABSTRACT

In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20years, even for vapor source concentrations up to 10g/m3. A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application.


Subject(s)
Environmental Restoration and Remediation/methods , Hydrology/methods , Models, Theoretical , Water Pollutants, Chemical , Diffusion , Gases , Halogenation , Hydrocarbons, Chlorinated , Hydrogen-Ion Concentration , Oxidation-Reduction , Porosity , Potassium Permanganate , Silicon Dioxide , Soil/chemistry , Solvents/chemistry , Tetrachloroethylene/chemistry , Trichloroethylene/chemistry , Water Pollution, Chemical/prevention & control
15.
J Contam Hydrol ; 189: 58-67, 2016 06.
Article in English | MEDLINE | ID: mdl-27116639

ABSTRACT

The adoption of source to building separation distances to screen sites that need further field investigation is becoming a common practice for the evaluation of the vapor intrusion pathway at sites contaminated by petroleum hydrocarbons. Namely, for the source to building vertical distance, the screening criteria for petroleum vapor intrusion have been deeply investigated in the recent literature and fully addressed in the recent guidelines issued by ITRC and U.S.EPA. Conversely, due to the lack of field and modeling studies, the source to building lateral distance received relatively low attention. To address this issue, in this work we present a steady-state vapor intrusion analytical model incorporating a piecewise first-order aerobic biodegradation limited by oxygen availability that accounts for lateral source to building separation. The developed model can be used to evaluate the role and relevance of lateral vapor attenuation as well as to provide a site-specific assessment of the lateral screening distances needed to attenuate vapor concentrations to risk-based values. The simulation outcomes showed to be consistent with field data and 3-D numerical modeling results reported in previous studies and, for shallow sources, with the screening criteria recommended by U.S.EPA for the vertical separation distance. Indeed, although petroleum vapors can cover maximum lateral distances up to 25-30m, as highlighted by the comparison of model outputs with field evidences of vapor migration in the subsurface, simulation results by this new model indicated that, regardless of the source concentration and depth, 6m and 7m lateral distances are sufficient to attenuate petroleum vapors below risk-based values for groundwater and soil sources, respectively. However, for deep sources (>5m) and for low to moderate source concentrations (benzene concentrations lower than 5mg/L in groundwater and 0.5mg/kg in soil) the above criteria were found extremely conservative as the model results indicated that for such scenarios the lateral screening distance may be set equal to zero.


Subject(s)
Petroleum , Soil Pollutants , Water Pollutants, Chemical , Aerobiosis , Air Pollutants , Benzene , Biodegradation, Environmental , Gases , Groundwater/chemistry , Hydrocarbons/analysis , Hydrocarbons/metabolism , Models, Theoretical , Oxygen/metabolism , Petroleum/analysis , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Volatilization
16.
J Contam Hydrol ; 183: 99-108, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26544517

ABSTRACT

In Situ Chemical Oxidation (ISCO) based on the Fenton's process is a proven technology for the treatment of groundwater contaminated by organic compounds. Nevertheless, the application of this treatment process to methyl tert-butyl ether (MtBE) is questioned, as there are concerns about its capacity to achieve complete mineralization. Many existing studies have focused on water contaminated by MtBE and are thus not representative of in situ treatments since they do not consider the presence of soil. In this work, the effectiveness of a Fenton-like process for MtBE treatment was proven in soil column tests performed at operating conditions (i.e., oxidant and contaminant concentration and flow rates) resembling those typically used for in situ applications. No MtBE by-products were detected in any of the tested conditions, thus suggesting that the tert-butyl group of MtBE was completely degraded. A mass balance based on the CO2 produced was used as evidence that most of the MtBE removed was actually mineralized. Finally, the obtained results show that preconditioning of soil with a chelating agent (EDTA) significantly enhanced MtBE oxidation.


Subject(s)
Methyl Ethers/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Calcium Chelating Agents/chemistry , Carbon Dioxide/chemistry , Edetic Acid/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Laboratories , Oxidants/chemistry , Oxidation-Reduction , Soil/chemistry
17.
Environ Sci Technol ; 48(22): 13263-72, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25329246

ABSTRACT

The key role of biodegradation in attenuating the migration of petroleum hydrocarbon vapors into the indoor environments has been deeply investigated in the last decades. Very recently, empirical screening levels for the separation distance from the source, above which the potential for vapor intrusion can be considered negligible, were defined. In this paper, an analytical solution that allows one to predict risk-based vertical screening distances for hydrocarbons compounds is presented. The proposed solution relies on a 1-D vapor intrusion model that incorporates a piecewise first-order aerobic biodegradation limited by oxygen availability and accounts also for the effect of the building footprint. The model predictions are shown to be consistent with the results obtained using a 3-D numerical model and with the empirical screening criteria defined by U.S.EPA and CRC care. However, the different simulations carried out show that in some specific cases (e.g., large building footprint, high methane concentration, and low attenuation in the capillary fringe), the respect of these empirical screening criteria could be insufficient to guarantee soil-gas concentrations below acceptable risk-based levels.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Models, Theoretical , Petroleum/analysis , Risk Assessment , Air Pollution, Indoor/analysis , Benzene/analysis , Computer Simulation , Monte Carlo Method , Volatilization
18.
Sci Total Environ ; 485-486: 726-738, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24518270

ABSTRACT

This paper reports about a pilot-scale feasibility study of In-Situ Chemical Oxidation (ISCO) application based on the use of stabilized hydrogen peroxide catalyzed by naturally occurring iron minerals (Fenton-like process) to a site formerly used for fuel storage and contaminated by MtBE. The stratigraphy of the site consists of a 2-3 meter backfill layer followed by a 3-4 meter low permeability layer, that confines the main aquifer, affected by a widespread MtBE groundwater contamination with concentrations up to 4000 µg/L, also with the presence of petroleum hydrocarbons. The design of the pilot-scale treatment was based on the integration of the results obtained from experimental and numerical modeling accounting for the technological and regulatory constraints existing in the site to be remediated. In particular, lab-scale batch tests allowed the selection of the most suitable operating conditions. Then, this information was implemented in a numerical software that allowed to define the injection and monitoring layout and to predict the propagation of hydrogen peroxide in groundwater. The pilot-scale field results confirmed the effective propagation of hydrogen peroxide in nearly all the target area (around 75 m(2) using 3 injection wells). As far as the MtBE removal is concerned, the ISCO application allowed us to meet the clean-up goals in an area of 60 m(2). Besides, the concentration of TBA, i.e. a potential by-product of MtBE oxidation, was actually reduced after the ISCO treatment. The results of the pilot-scale test suggest that ISCO may be a suitable option for the remediation of the groundwater plume contaminated by MtBE, providing the background data for the design and cost-estimate of the full-scale treatment.


Subject(s)
Environmental Restoration and Remediation/methods , Groundwater/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Methyl Ethers/chemistry , Water Pollutants, Chemical/chemistry , Methyl Ethers/analysis , Models, Chemical , Pilot Projects , Water Pollutants, Chemical/analysis
19.
Waste Manag ; 33(12): 2694-705, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24045173

ABSTRACT

This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction.


Subject(s)
Biofuels , Calcium Carbonate/chemical synthesis , Carbon Dioxide/isolation & purification , Hydroxides/chemistry , Potassium Compounds/chemistry , Sodium Hydroxide/chemistry , Adsorption
20.
J Environ Manage ; 114: 395-403, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23186723

ABSTRACT

Natural attenuation (NA) processes occurring in the subsurface can significantly affect the impact on groundwater from contamination sources located in the vadose zone, especially when mobile and readily biodegradable compounds, such as BTEX, are present. Besides, in the last decades several studies have shown natural attenuation to take place also for more persistent compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs). Nevertheless, common risk analysis frameworks, based on the ASTM RBCA (Risk Based Corrective Action) approach, do not include NA pathways in the fate and transport models, thus possibly leading to an overestimation of the calculated risk. The aim of this study was to provide an insight on the relevance of the different key natural attenuation processes usually taking place in the subsurface and to highlight for which contamination scenarios their inclusion in the risk-analysis framework could provide a more realistic risk assessment. To this end, an analytical model accounting for source depletion and biodegradation, dispersion and diffusion during leaching was developed and applied to several contamination scenarios. These scenarios included contamination by BTEX, characterized by relatively high mobility and biodegradation rate, and PAHs, i.e. a more persistent class of compounds. The obtained results showed that BTEX are likely to be attenuated in the source zone due to their mobility and ready biodegradation (assuming biodegradation constant rates in the order of 0.01-1 d(-1)). Instead, attenuation along transport through the vadose zone was found to be less important, as the residence time of the contaminant in the unsaturated zone is often too low with respect to the time required to get a relevant biodegradation of BTEX. On the other hand, heavier compounds such as PAHs, were found to be attenuated during leaching since the residence time in the vadose zone can reach values up to thousands of years. In these cases, even with the relatively slow biodegradation rate of PAHs, in the order of 0.0001-0.001 d(-1), attenuation can result significant. These conclusions were also confirmed by comparing the model results with experimental data collected at an hydrocarbon-contaminated site. The proposed model, that neglects the transport of NAPLs, could be easily included in the risk-analysis framework, allowing to get a more realistic assessment of risks, while keeping the intrinsic simplicity of the ASTM-RBCA approach.


Subject(s)
Models, Theoretical , Water Pollutants, Chemical , Water Pollution , Benzene Derivatives/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...