Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145880

ABSTRACT

Worldwide, concerns about heavy metal contamination from manmade and natural sources have increased in recent decades. Metals released into the environment threaten human health, mostly due to their integration into the food chain and persistence. Nature offers a large range of materials with different functionalities, providing also a source of inspiration for scientists working in the field of material synthesis. In the current study, a new type of copolymer is introduced, which was synthesized for the first time by combining chitosan and poly(benzofurane-co-arylacetic acid), for use in the adsorption of toxic heavy metals. Such naturally derived materials can be easily and inexpensively synthesized and separated by simple filtration, thus becoming an attractive alternative solution for wastewater treatment. The new copolymer was investigated by solid-state nuclear magnetic resonance, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photon electron microscopy. Flame atomic absorption spectrometry was utilized to measure heavy metal concentrations in the investigated samples. Equilibrium isotherms, kinetic 3D models, and artificial neural networks were applied to the experimental data to characterize the adsorption process. Additional adsorption experiments were performed using metal-contaminated water samples collected in two seasons (summer and winter) from two former mining areas in Romania (Roșia Montana and Novaț-Borșa). The results demonstrated high (51-97%) adsorption efficiency for Pb and excellent (95-100%) for Cd, after testing on stock solutions and contaminated water samples. The recyclability study of the copolymer indicated that the removal efficiency decreased to 89% for Pb and 58% for Cd after seven adsorption-desorption cycles.

2.
Nanomaterials (Basel) ; 11(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803300

ABSTRACT

Synthetic dyes represent a significant class of contaminants released in the environment. Crystal violet is a triarylmethane dye used in several fields such as printing inks, the textile or paper industries, as well as in cell histology. Coating magnetic nanoparticles with functionalized polymers has been proved to improve their efficiency, offering unique properties for applications in wastewater treatment. The current paper focuses on preparing and characterising magnetic core-shell nanoparticles coated with poly(benzofuran-co-arylacetic acid) functionalized with folic acid as an organic shell. The new polymer-based magnetic nanostructures were applied for crystal violet extraction from aqueous solutions. The nanostructures were structurally and morphologically investigated by Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). While thermal and magnetic properties of the magnetic nanostructures were determined by thermogravimetric analysis (TGA) and magnetization measurements (VSM). At the same time, crystal violet concentrations were determined by UV-VIS spectroscopy. The influence of initial dye concentration and contact time on the removal efficiency has been studied to achieve the optimum adsorption conditions. The dye adsorbent neoteric magnetic nanostructure was easily desorbed and reused, the adsorption capacity decreasing from 100% to 97.63% in the first five cycles, reaching a minimum of 88.74% after the 10th recycling step.

3.
Sci Total Environ ; 660: 660-676, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30641395

ABSTRACT

The increasing contamination of fresh water resources by trace metals and persistent organic pollutants is a major environmental concern. In the present study, we investigated, for the first time, the distribution, sources and ecological risk of trace metals and organic pollutants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), in surface sediments from a Southeastern European river (Somesu Mic River, Romania). Concentrations of Cd, Cr, Cu, Pb, Ni and Zn ranged from 0.04 to 0.4, 9.4 to 43.15, 7.2 to 65.6, 12.3 to 131.4, 14.7 to 47.7 and 42.1 to 236.8 mg kg-1 dw, respectively. Concentrations of total PAHs, PCBs and OCPs ranged from 24.8 to 575.6, 2.7 to 252.7 and 2.1 to 44.3 ng g-1 dw, respectively. Some sediment parameters, i.e., pH, total organic carbon (TOC) and total organic matter (OM) contents, played a significant role in the spatial distribution of contaminants. A combined analysis based on diagnostic ratios and multivariate analyses revealed PAHs originating mainly from pyrolytic sources. PCB compositions showed distinct contamination signatures for tri- to tetra-chlorinated PCBs, characteristic of contamination by Aroclor-1016 and -1254 technical mixtures. The dominant OCP congeners were α-HCH and p,p'-DDD, reflecting past use of technical HCHs and DDTs in agricultural practices. Metal source and pollution status was assessed using geoaccumulation index and enrichment factor, which indicate widespread pollution by Pb, Cd, Zn, Ni and Cu. The use of Sediments Quality Guidelines (SQGs), mean effect range-median quotient (m-ERM-Q) and toxic equivalent factor (TEF) indicated that the highest ecological risks occurred for PCBs and DDTs. This work presents not only initial baseline information on the extent of organic and inorganic contaminations in a river of ecological and economical interest, but also provides a diagnostic ratio/statistical combined approach that can be used to evaluate sediment quality in similar environments.

4.
Microbiome ; 6(1): 118, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29954460

ABSTRACT

BACKGROUND: Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. RESULTS: Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. CONCLUSION: New biomolecular tools designed in this study have expanded our ability to detect, and our knowledge of the environmental distribution of Methylocella, a unique facultative methanotroph. This study has revealed that Methylocella are particularly abundant at natural gas seeps and may play a significant role in biogeochemical cycling of gaseous hydrocarbons.


Subject(s)
Beijerinckiaceae/classification , Beijerinckiaceae/isolation & purification , Methane/metabolism , Natural Gas/microbiology , Oxygenases/genetics , Base Sequence , Beijerinckiaceae/genetics , Beijerinckiaceae/metabolism , Phylogeny , Propane/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology
5.
Ecotoxicology ; 26(8): 1018-1030, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28699076

ABSTRACT

Metal pollution of aquatic habitats is a major and persistent environmental problem. Acid mine drainage (AMD) affects lotic systems in numerous and interactive ways. In the present work, a mining area (Roșia Montana) was chosen as study site, and we focused on two aims: (i) to find the set of environmental predictors leading to the appearance of the abnormal diatom individuals in the study area and (ii) to assess the relationship between the degree of valve outline deformation and AMD-derived pollution. In this context, morphological differences between populations of Achnanthidium minutissimum and A. macrocephalum, including normal and abnormal individuals, were evidenced by means of valve shape analysis. Geometric morphometry managed to capture and discriminate normal and abnormal individuals. Multivariate analyses (NMDS, PLS) separated the four populations of the two species mentioned and revealed the main physico-chemical parameters that influenced valve deformation in this context, namely conductivity, Zn, and Cu. ANOSIM test evidenced the presence of statistically significant differences between normal and abnormal individuals within both chosen Achnanthidium taxa. In order to determine the relative contribution of each of the measured physico-chemical parameters in the observed valve outline deformations, a PLS was conducted, confirming the results of the NMDS. The presence of deformed individuals in the study area can be attributed to the fact that the diatom communities were strongly affected by AMD released from old mining works and waste rock deposits.


Subject(s)
Diatoms/physiology , Environmental Monitoring , Industrial Waste/analysis , Water Pollutants, Chemical/toxicity , Congenital Abnormalities , Diatoms/drug effects , Ecosystem , Mining , Montana , Teratology
6.
Rev Environ Health ; 32(1-2): 215-220, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27930368

ABSTRACT

Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in the SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg (2 mg/kg), and the alert thresholds in case of Pb (50 mg/kg) and Cd (3 mg/kg)]. Average metal concentrations in drinking water did not exceed the maximum contaminant level (MCL) imposed by the Romanian legislation, but high metal concentrations were found in surface water from Rosia creek, downstream from the former mining area.


Subject(s)
Metals/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Mining , Romania
7.
Environ Sci Pollut Res Int ; 23(7): 6062-73, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26062461

ABSTRACT

Information about heavy metal concentrations in food products and their dietary intake are essential for assessing the health risk of local inhabitants. The main purposes of the present study were (1) to investigate the concentrations of Zn, Cu, Pb, and Cd in several vegetables and fruits cultivated in Baia Mare mining area (Romania); (2) to assess the human health risk associated with the ingestion of contaminated vegetables and fruits by calculating the daily intake rate (DIR) and the target hazard quotient (THQ); and (3) to establish some recommendations on human diet in order to assure an improvement in food safety. The concentration order of heavy metals in the analyzed vegetable and fruit samples was Zn > Cu > Pb > Cd. The results showed the heavy metals are more likely to accumulate in vegetables (10.8-630.6 mg/kg dw for Zn, 1.4-196.6 mg/kg dw for Cu, 0.2-155.7 mg/kg dw for Pb, and 0.03-6.61 mg/kg dw for Cd) than in fruits (4.9-55.9 mg/kg dw for Zn, 1.9-24.7 mg/kg dw for Cu, 0.04-8.82 mg/kg dw for Pb, and 0.01-0.81 mg/kg dw for Cd). Parsley, kohlrabi, and lettuce proved to be high heavy metal accumulators. By calculating DIR and THQ, the data indicated that consumption of parsley, kohlrabi, and lettuce from the area on a regular basis may pose high potential health risks to local inhabitants, especially in the area located close to non-ferrous metallurgical plants (Romplumb SA and Cuprom SA) and close to Tauții de Sus tailings ponds. The DIR for Zn (85.3-231.6 µg/day kg body weight) and Cu (25.0-44.6 µg/day kg body weight) were higher in rural areas, while for Pb (0.6-3.1 µg/day kg body weight) and Cd (0.22-0.82 µg/day kg body weight), the DIR were higher in urban areas, close to the non-ferrous metallurgical plants SC Romplumb SA and SC Cuprom SA. The THQ for Zn, Cu, Pb, and Cd was higher than 5 for <1, <1, 12, and 6% of samples which indicates that those consumers may experience major health risks.


Subject(s)
Environmental Monitoring , Fruit/chemistry , Metals, Heavy/analysis , Mining , Soil Pollutants/analysis , Vegetables/chemistry , Animals , Female , Food Contamination/analysis , Food Contamination/statistics & numerical data , Horses , Humans , Metallurgy , Risk Assessment , Romania
8.
Int J Hyg Environ Health ; 218(4): 371-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25697081

ABSTRACT

Excessive arsenic content in drinking water poses health risks to millions of people worldwide. Inorganic arsenic (iAs) in groundwater exceeding the 10µg/l maximum contaminant level (MCL) set by the World Health Organization (WHO) is characteristic for intermediate-depth aquifers over large areas of the Pannonian Basin in Central Europe. In western Romania, near the border with Hungary, Arad, Bihor, and Timis counties use drinking water coming partially or entirely from iAs contaminated aquifers. In nearby Arad and Bihor counties, more than 45,000 people are exposed to iAs over 10µg/l via public drinking water sources. However, comparable data are unavailable for Timis County. To begin to address this data gap, we determined iAs in 124 public and private Timis County drinking water sources, including wells and taps, used by pregnant women participating in a case-control study of spontaneous loss. Levels in water sources were low overall (median=3.0; range=<0.5-175µg/l), although higher in wells (median=3.1, range=<0.5-1.75) than in community taps (median=2.7, range=<0.5-36.4). In a subsample of 20 control women we measured urine biomarkers of iAs exposure, including iAs (arsenite and arsenate), dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Median values were higher among 10 women using iAs contaminated drinking water sources compared to 10 women using uncontaminated sources for urine total iAs (6.6 vs. 5.0µg/l, P=0.24) and DMA (5.5 vs. 4.2µg/l, P=0.31). The results suggested that the origin of urine total iAs (r=0.35, P=0.13) and DMA (r=0.31, P=0.18) must have been not only iAs in drinking-water but also some other source. Exposure of pregnant women to arsenic via drinking water in Timis County appears to be lower than for surrounding counties; however, it deserves a more definitive investigation as to its origin and the regional distribution of its risk potential.


Subject(s)
Arsenic Poisoning/urine , Arsenicals/analysis , Drinking Water/chemistry , Maternal Exposure/adverse effects , Pregnancy Complications/urine , Abortion, Spontaneous/urine , Adult , Arsenic Poisoning/complications , Case-Control Studies , Female , Humans , Pregnancy , Pregnancy Complications/chemically induced , Pregnancy Outcome , Risk Factors , Romania
SELECTION OF CITATIONS
SEARCH DETAIL
...