Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Phys Rev Lett ; 130(4): 046704, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36763433

ABSTRACT

Tuning of the anisotropic Gilbert damping Δα has been realized in ultrathin single-crystalline Fe films grown on GaAs (001). A nonmonotonic dependence of Δα on film thickness t is observed upon varying t about 10 ML (∼1.4 nm). Δα increases for 16 ML>t>8.5 ML, and then decreases for 8.5 ML>t>6.5 ML accompanied by a sign reversal of Δα for t=6.5 ML. The sign reversal of Δα is captured by first-principle calculations, which show that the anisotropic density of states changes sign upon decreasing t. Moreover, t^{-1} dependence of the anisotropic damping indicates the emergence of an anisotropic effective spin mixing conductance according to the theory of spin pumping. The results establish new opportunities for controlling the Gilbert damping and for fundamental studies of magnetization dynamics in reduced dimension.

2.
Micromachines (Basel) ; 13(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36363931

ABSTRACT

We show that magnetic skyrmions can be stabilised at room temperature in continuous [Ir/Co/Pt]5 multilayers on SiO2/Si substrates without the prior application of electric current or magnetic field. While decreasing the Co thickness, a transition of the magnetic domain patterns from worm-like state to separated stripes is observed. The skyrmions are clearly imaged in both states using magnetic force microscopy. The density of skyrmions can be significantly enhanced after applying the "in-plane field procedure". Our results provide means to manipulate magnetic skyrmion density, further allowing for the optimised engineering of skyrmion-based devices.

3.
Sci Technol Adv Mater ; 23(1): 682-690, 2022.
Article in English | MEDLINE | ID: mdl-36277505

ABSTRACT

Resonant elastic soft X-ray magnetic scattering (XRMS) is a powerful tool to explore long-periodic spin textures in single crystals. However, due to the limited momentum transfer range imposed by long wavelengths of photons in the soft x-ray region, Bragg diffraction is restricted to crystals with the large lattice parameters. Alternatively, small-angle X-ray scattering has been involved in the soft energy X-ray range which, however, brings in difficulties with the sample preparation that involves focused ion beam milling to thin down the crystal to below a few hundred nm thickness. We show how to circumvent these restrictions using XRMS in specular reflection from a sub-nanometer smooth crystal surface. The method allows observing diffraction peaks from the helical and conical spin modulations at the surface of a Cu   2 OSeO   3 single crystal and probing their corresponding chirality as contributions to the dichroic scattered intensity. The results suggest a promising way to carry out XRMS studies on a plethora of noncentrosymmetric systems hitherto unexplored with soft X-rays due to the absence of the commensurate Bragg peaks in the available momentum transfer range.

4.
Phys Ther ; 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33774667

ABSTRACT

OBJECTIVE: Given the complex and unclear etiology of neck pain, it is important to understand the differences in central sensitization as well as psychosocial factors in individuals with chronic neck pain and healthy controls. The purpose of this study was to benchmark differences in central sensitization, psychosocial factors, and range of motion between people with nonspecific chronic neck pain and healthy controls and to analyze the correlation between pain intensity, neck disability, and psychosocial factors in people with chronic neck pain. METHODS: Thirty individuals with chronic neck pain and 30 healthy controls were included in this case-control study. Outcome measures were as follows: central sensitization (pressure pain threshold, temporal summation, and conditioned pain modulation), psychosocial factors (depressive symptoms, pain catastrophizing, and quality of life), and active cervical range of motion. RESULTS: People with neck pain had lower local pressure pain threshold, a decrease in conditioned pain modulation, more depressive symptoms, greater pain catastrophizing, lower quality of life, and reduced range of motion for neck rotation when compared with healthy controls. In people with neck pain, moderate correlations were observed between pain intensity and quality of life (ρ = -0.479), disability and pain catastrophizing (ρ = 0.379), and disability and quality of life (ρ = -0.456). CONCLUSIONS: People with neck pain have local hyperalgesia, impaired conditioning pain modulation, depressive symptoms, pain catastrophizing, low quality of life, and reduced active range of motion during neck rotation, which should be taken into account during assessment and treatment. IMPACT: This study shows that important outcomes, such as central sensitization and psychosocial factors, should be considered during assessment and treatment of individuals with nonspecific chronic neck pain. In addition, pain intensity and neck disability are correlated with psychosocial factors.

5.
J Phys Condens Matter ; 33(41)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-33662946

ABSTRACT

Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-topics prompted us to present the first roadmap on magnonics. This is a collection of 22 sections written by leading experts in this field who review and discuss the current status besides presenting their vision of future perspectives. Today, the principal challenges in applied magnonics are the excitation of sub-100 nm wavelength magnons, their manipulation on the nanoscale and the creation of sub-micrometre devices using low-Gilbert damping magnetic materials and its interconnections to standard electronics. To this end, magnonics offers lower energy consumption, easier integrability and compatibility with CMOS structure, reprogrammability, shorter wavelength, smaller device features, anisotropic properties, negative group velocity, non-reciprocity and efficient tunability by various external stimuli to name a few. Hence, despite being a young research field, magnonics has come a long way since its early inception. This roadmap asserts a milestone for future emerging research directions in magnonics, and hopefully, it will inspire a series of exciting new articles on the same topic in the coming years.

6.
Ultramicroscopy ; 223: 113224, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33601239

ABSTRACT

Several errors are present in the text and Fig. 3 of the article Ultramicroscopy 212 (2020) 112973. This includes minor confusions concerning the skyrmion helicities and a wrong orientation of a color wheel that represents the electron phase gradient direction. Further, the presented correction factors for finite probe sizes were based on an erratic simulation which is now corrected. This leads to different error values for the measured skyrmion size. These flaws do not affect the main message of the paper which is the relation of the skyrmion structure with the electron phase at all. They only affect the small section of the proof of principle skyrmion size measurement where aberrations were included.

7.
Ultramicroscopy ; 212: 112973, 2020 May.
Article in English | MEDLINE | ID: mdl-32151794

ABSTRACT

Magnetic skyrmions are promising candidates for future storage devices with a large data density. A great variety of materials have been found that host skyrmions up to the room-temperature regime. Lorentz microscopy, usually performed in a transmission electron microscope (TEM), is one of the most important tools for characterizing skyrmion samples in real space. Using numerical calculations, this work relates the phase contrast in a TEM to the actual magnetization profile of an isolated Néel or Bloch skyrmion, the two most common skyrmion types. Within the framework of the used skyrmion model, the results are independent of skyrmion size and wall width and scale with sample thickness for purely magnetic specimens. Simple rules are provided to extract the actual skyrmion configuration of pure Bloch or Néel skyrmions without the need of simulations. Furthermore, first differential phase contrast (DPC) measurements on Néel skyrmions that meet experimental expectations are presented and showcase the described principles. The work is relevant for material sciences where it enables the engineering of skyrmion profiles via convenient characterization.

8.
Phys Rev Lett ; 123(16): 167201, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31702336

ABSTRACT

Cubic chiral magnets, such as Cu_{2}OSeO_{3}, exhibit a variety of noncollinear spin textures, including a trigonal lattice of spin whirls, the so-called skyrmions. Using magnetic resonant elastic x-ray scattering (REXS) on a crystalline Bragg peak and its magnetic satellites while exciting the sample with magnetic fields at gigahertz frequencies, we probe the ferromagnetic resonance (FMR) modes of these spin textures by means of the scattered intensity. Most notably, the three eigenmodes of the skyrmion lattice are detected with large sensitivity. As this novel technique, which we label REXS FMR, is carried out at distinct positions in reciprocal space, it allows us to distinguish contributions originating from different magnetic states, providing information on the precise character, weight, and mode mixing as a prerequisite of tailored excitations for applications.

9.
Phys Rev Lett ; 122(11): 117202, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30951356

ABSTRACT

In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.

10.
Phys Rev Lett ; 121(13): 137201, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30312069

ABSTRACT

In optics, a light beam experiences a spatial shift in the beam plane upon total internal reflection. This shift is usually referred to as the Goos-Hänchen shift. When dealing with plane waves, it manifests itself as a phase shift between an incoming and reflected wave that depends on the wave vector component along the interface. In the experiments presented here, plane spin waves are excited in a 60-nm-thick Permalloy film and propagate towards the edge of the film. By means of time-resolved scanning Kerr microscopy, we are able to directly detect a phase shift between the incoming and reflected wave. With the help of a numerical model, we show that this phase shift naturally occurs for spin waves in the dipolar regime.

11.
Nat Commun ; 9(1): 3335, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30127415

ABSTRACT

Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron-phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities.

12.
Sci Rep ; 7(1): 13431, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044168

ABSTRACT

Ultra-low-field (ULF) nuclear magnetic resonance (NMR) is a promising spectroscopy method allowing for, e.g., the simultaneous detection of multiple nuclei. To overcome the low signal-to-noise ratio that usually hampers a wider application, we present here an alternative approach to ULF NMR, which makes use of the hyperpolarizing technique signal amplification by reversible exchange (SABRE). In contrast to standard parahydrogen hyperpolarization, SABRE can continuously hyperpolarize 1 H as well as other MR-active nuclei. For simultaneous measurements of 1 H and 19 F under SABRE conditions a superconducting quantum interference device (SQUID)-based NMR detection unit was adapted. We successfully hyperpolarized fluorinated pyridine derivatives with an up to 2000-fold signal enhancement in 19 F. The detected signals may be explained by two alternative reaction mechanisms. SABRE combined with simultaneous SQUID-based broadband multinuclear detection may enable the quantitative analysis of multinuclear processes.

13.
Phys Rev Lett ; 118(25): 257201, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28696748

ABSTRACT

We report the experimental observation of spin-orbit torque induced switching of perpendicularly magnetized Pt/Co elements in a time resolved stroboscopic experiment based on high resolution Kerr microscopy. Magnetization dynamics is induced by injecting subnanosecond current pulses into the bilayer while simultaneously applying static in-plane magnetic bias fields. Highly reproducible homogeneous switching on time scales of several tens of nanoseconds is observed. Our findings can be corroborated using micromagnetic modeling only when including a fieldlike torque term as well as the Dzyaloshinskii-Moriya interaction mediated by finite temperature.

14.
Nat Commun ; 8: 16051, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28714466

ABSTRACT

In the rapidly growing field of spintronics, simultaneous control of electronic and magnetic properties is essential, and the perspective of building novel phases is directly linked to the control of tuning parameters, for example, thickness and doping. Looking at the relevant effects in interface-driven spintronics, the reduced symmetry at a surface and interface corresponds to a severe modification of the overlap of electron orbitals, that is, to a change of electron hybridization. Here we report a chemically and magnetically sensitive depth-dependent analysis of two paradigmatic systems, namely La1-xSrxMnO3 and (Ga,Mn)As. Supported by cluster calculations, we find a crossover between surface and bulk in the electron hybridization/correlation and we identify a spectroscopic fingerprint of bulk metallic character and ferromagnetism versus depth. The critical thickness and the gradient of hybridization are measured, setting an intrinsic limit of 3 and 10 unit cells from the surface, respectively, for (Ga,Mn)As and La1-xSrxMnO3, for fully restoring bulk properties.

15.
Phys Rev Lett ; 118(20): 207205, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28581772

ABSTRACT

The chiral magnet Cu_{2}OSeO_{3} hosts a Skyrmion lattice that may be equivalently described as a superposition of plane waves or a lattice of particlelike topological objects. A thermal gradient may break up the Skyrmion lattice and induce rotating domains, raising the question of which of these scenarios better describes the violent dynamics at the domain boundaries. Here, we show that in an inhomogeneous temperature gradient caused by illumination in a Lorentz transmission electron microscope different parts of the Skyrmion lattice can be set into motion with different angular velocities. Tracking the time dependence, we show that the constant rearrangement of domain walls is governed by dynamic 5-7 defects arranging into lines. An analysis of the associated defect density is described by Frank's equation and agrees well with classical 2D Monte Carlo simulations. Fluctuations of boundaries show a surgelike rearrangement of Skyrmion clusters driven by defect rearrangement consistent with simulations treating Skyrmions as point particles. Our findings underline the particle character of the Skyrmion.

16.
Vox Sang ; 112(3): 229-239, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28220499

ABSTRACT

BACKGROUND AND OBJECTIVES: Traditionally, Denmark has had a high rate of allogeneic red blood cell transfusion caused by a liberal transfusion practice despite the existence of restrictive guidelines. We established a Patient Blood Management programme in a tertiary hospital and report the results of the implementation of evidence-based transfusion practice. MATERIALS AND METHODS: Red blood cell transfusion quality indicators were compared with the evidence-based guideline at hospital and department level. Based on this evaluation, wards were selected for interventions targeting doctors and nurses. The implementation process was monitored by transfusion quality and utilization data over a 3-year period with totally 166 341 admissions in 98 960 mixed, adult medical and surgical patients. RESULTS: At the hospital level, transfusion above the upper guideline limit decreased from 23 to 10% (P < 0·001), and transfusion at or below the restrictive haemoglobin trigger of 7·3 g/dl increased from 7 to 19% (P < 0·001). The percentage of single-unit transfusions increased from 72 to 78% (P < 0·001), and the majority of transfusion rates and volumes decreased significantly. Red cell use decreased with 41% in surgical procedures and 28% in admissions (P < 0·001). CONCLUSION: The intervention was associated with a significant and sustained overall increase in compliance with national guidelines for red blood cell transfusion for non-bleeding patients, and led to significantly fewer patients being exposed to transfusion.


Subject(s)
Erythrocyte Transfusion , Adult , Databases, Factual , Denmark , Evidence-Based Practice , Female , Follow-Up Studies , Hemoglobins/analysis , Humans , Intensive Care Units , Length of Stay , Male , Middle Aged , Tertiary Care Centers
17.
Nat Commun ; 7: 13802, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27958265

ABSTRACT

Interfacial spin-orbit torques (SOTs) enable the manipulation of the magnetization through in-plane charge currents, which has drawn increasing attention for spintronic applications. The search for material systems providing efficient SOTs, has been focused on polycrystalline ferromagnetic metal/non-magnetic metal bilayers. In these systems, currents flowing in the non-magnetic layer generate-due to strong spin-orbit interaction-spin currents via the spin Hall effect and induce a torque at the interface to the ferromagnet. Here we report the observation of robust SOT occuring at a single crystalline Fe/GaAs (001) interface at room temperature. We find that the magnitude of the interfacial SOT, caused by the reduced symmetry at the interface, is comparably strong as in ferromagnetic metal/non-magnetic metal systems. The large spin-orbit fields at the interface also enable spin-to-charge current conversion at the interface, known as spin-galvanic effect. The results suggest that single crystalline Fe/GaAs interfaces may enable efficient electrical magnetization manipulation.

18.
Phys Rev Lett ; 117(15): 157202, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27768325

ABSTRACT

We report the observation of the anisotropic polar magneto-optical Kerr effect in thin layers of epitaxial Fe/GaAs(001) at room temperature. A clear twofold symmetry of the Kerr rotation angle depending on the orientation of the linear polarization of the probing laser beam with respect to the crystallographic directions of the sample is detected for ultrathin magnetic films saturated out of the film plane. The amplitude of the anisotropy decreases with increasing Fe film thickness, suggesting that the interfacial region is the origin of the anisotropy. The twofold symmetry is fully reproduced by model calculations based on an interference of interfacial Bychkov-Rashba and Dresselhaus spin-orbit coupling.

19.
Phys Rev Lett ; 117(16): 167204, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27792386

ABSTRACT

Within a combined experimental and theoretical study it is shown that the spin Hall angle of a substitutional alloy system can be continuously varied via its composition. For the alloy system Au_{x}Pt_{1-x} a substantial increase of the maximum spin Hall angle compared to the pure alloy partners could be achieved this way. The experimental findings for the longitudinal charge conductivity σ, the transverse spin Hall conductivity σ_{SH}, and the spin Hall angle α_{SH} could be confirmed by calculations based on Kubo's linear response formalism. Calculations of these response quantities for different temperatures show that the divergent behavior of σ and σ_{SH} is rapidly suppressed with increasing temperature. As a consequence, σ_{SH} is dominated at higher temperatures by its intrinsic contribution that has only a rather weak temperature dependence.

20.
Phys Rev Lett ; 117(3): 037204, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27472134

ABSTRACT

We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...