Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 21(19): 8332-8339, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34607425

ABSTRACT

Single-layer graphene has many remarkable properties but does not lend itself as a material for light-emitting devices as a result of its lack of a band gap. This limitation can be overcome by a controlled stacking of graphene layers. Exploiting the unique Dirac cone band structure of graphene, we demonstrate twist-controlled resonant light emission from graphene/hexagonal boron nitride (h-BN)/graphene tunnel junctions. We observe light emission irrespective of the crystallographic alignment between the graphene electrodes. Nearly aligned devices exhibit pronounced resonant features in both optical and electrical characteristics that vanish rapidly for twist angles θ ≳3°. These experimental findings can be well-explained by a theoretical model in which the spectral photon emission peak is attributed to photon-assisted momentum conserving electron tunneling. The resonant peak in our aligned devices can be spectrally tuned within the near-infrared range by over 0.2 eV, making graphene/h-BN/graphene tunnel junctions potential candidates for on-chip optoelectronics.

2.
Nature ; 595(7865): 53-57, 2021 07.
Article in English | MEDLINE | ID: mdl-34194018

ABSTRACT

When the Coulomb repulsion between electrons dominates over their kinetic energy, electrons in two-dimensional systems are predicted to spontaneously break continuous-translation symmetry and form a quantum crystal1. Efforts to observe2-12 this elusive state of matter, termed a Wigner crystal, in two-dimensional extended systems have primarily focused on conductivity measurements on electrons confined to a single Landau level at high magnetic fields. Here we use optical spectroscopy to demonstrate that electrons in a monolayer semiconductor with density lower than 3 × 1011 per centimetre squared form a Wigner crystal. The combination of a high electron effective mass and reduced dielectric screening enables us to observe electronic charge order even in the absence of a moiré potential or an external magnetic field. The interactions between a resonantly injected exciton and electrons arranged in a periodic lattice modify the exciton bandstructure so that an umklapp resonance arises in the optical reflection spectrum, heralding the presence of charge order13. Our findings demonstrate that charge-tunable transition metal dichalcogenide monolayers14 enable the investigation of previously uncharted territory for many-body physics where interaction energy dominates over kinetic energy.

3.
Nano Lett ; 20(8): 6155-6161, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32692568

ABSTRACT

Van der Waals heterostructures assembled from two-dimensional materials offer a promising platform to engineer structures with desired optoelectronic characteristics. Here we use waveguide-coupled disk resonators made of hexagonal boron nitride (h-BN) to demonstrate cavity-coupled emission from interlayer excitons of a heterobilayer of two monolayer transition metal dichalcogenides. We sandwich a MoSe2-WSe2 heterobilayer between two slabs of h-BN and directly pattern the resulting stack into waveguide-coupled disk resonators. This enables us to position the active materials into regions of highest optical field intensity, thereby maximizing the mode overlap and the coupling strength. Since the interlayer exciton emission energy is lower than the optical band gaps of the individual monolayers and since the interlayer transition itself has a weak oscillator strength, the circulating light is only weakly reabsorbed, which results in an unaffected quality factor. Our devices are fully waveguide-coupled and represent a promising platform for on-chip van der Waals photonics.

4.
Phys Rev Lett ; 120(3): 037401, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400509

ABSTRACT

The advent of two-dimensional semiconductors, such as van der Waals heterostructures, propels new research directions in condensed matter physics and enables development of novel devices with unique functionalities. Here, we show experimentally that a monolayer of MoSe_{2} embedded in a charge controlled heterostructure can be used to realize an electrically tunable atomically thin mirror, which effects 87% extinction of an incident field that is resonant with its exciton transition. The corresponding maximum reflection coefficient of 41% is only limited by the ratio of the radiative decay rate to the nonradiative linewidth of exciton transition and is independent of incident light intensity up to 400 W/cm^{2}. We demonstrate that the reflectivity of the mirror can be drastically modified by applying a gate voltage that modifies the monolayer charge density. Our findings could find applications ranging from fast programable spatial light modulators to suspended ultralight mirrors for optomechanical devices.

5.
Phys Rev Lett ; 121(24): 247701, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30608765

ABSTRACT

The strong spin-orbit coupling and the broken inversion symmetry in monolayer transition metal dichalcogenides results in spin-valley coupled band structures. Such a band structure leads to novel applications in the fields of electronics and optoelectronics. Density functional theory calculations as well as optical experiments have focused on spin-valley coupling in the valence band. Here we present magnetotransport experiments on high-quality n-type monolayer molybdenum disulphide (MoS_{2}) samples, displaying highly resolved Shubnikov-de Haas oscillations at magnetic fields as low as 2 T. We find the effective mass 0.7m_{e}, about twice as large as theoretically predicted and almost independent of magnetic field and carrier density. We further detect the occupation of the second spin-orbit split band at an energy of about 15 meV, i.e., about a factor of 5 larger than predicted. In addition, we demonstrate an intricate Landau level spectrum arising from a complex interplay between a density-dependent Zeeman splitting and spin- and valley-split Landau levels. These observations, enabled by the high electronic quality of our samples, testify to the importance of interaction effects in the conduction band of monolayer MoS_{2}.

6.
Phys Rev Lett ; 118(23): 237404, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644665

ABSTRACT

For applications exploiting the valley pseudospin degree of freedom in transition metal dichalcogenide monolayers, efficient preparation of electrons or holes in a single valley is essential. Here, we show that a magnetic field of 7 T leads to a near-complete valley polarization of electrons in a MoSe_{2} monolayer with a density 1.6×10^{12} cm^{-2}; in the absence of exchange interactions favoring single-valley occupancy, a similar degree of valley polarization would have required a pseudospin g factor of 38. To investigate the magnetic response, we use polarization resolved photoluminescence as well as resonant reflection measurements. In the latter, we observe gate voltage dependent transfer of oscillator strength from the exciton to the attractive Fermi polaron: stark differences in the spectrum of the two light helicities provide a confirmation of valley polarization. Our findings suggest an interaction induced giant paramagnetic response of MoSe_{2}, which paves the way for valleytronics applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...