Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ORL J Otorhinolaryngol Relat Spec ; 84(2): 153-166, 2022.
Article in English | MEDLINE | ID: mdl-34488222

ABSTRACT

INTRODUCTION: Human nasal inferior turbinate-derived stem cells (hNTSCs) are attractive sources of adult stem cells for medical application because they can be easily obtained and cultivated with a highly proliferative capacity. The ability of hNTSCs to differentiate into chondrocytes, osteocytes, and neural cells makes them potential replacement therapeutic candidates in intractable disease. Nevertheless, detailed expression pattern of genes associated with trilineage differentiation (osteogenesis, chondrogenesis, and neurogenesis) in hNTSCs has not been revealed yet. METHODS: In this study, we aimed to evaluate gene expression patterns of various transcription factors and marker genes associated with a particular lineage (osteogenesis, chondrogenesis, and neurogenesis) of differentiation of hNTSCs by DNA microarrays. RESULTS: In microarrays, 36 transcripts such as E2F transcription factor 1, activating transcription factor 5, and AKR1B10 were upregulated and 36 transcripts such as CA9, PPFIA4, HAS2, and COL4A4 were downregulated in osteogenically differentiated hNTSCs. In chondrogenically differentiated hNTSCs, 3 transcripts (NUDT14, CPA4, and heparin-binding epidermal growth factor-like growth factor) were upregulated and 82 transcripts such as PTGS1, CLEC2D, and TET1 were downregulated. In neurally differentiated hNTSCs, 61 transcripts such as insulin-like growth factor-binding protein-1, nerve growth factor receptor, FGF1, OLFML1, and EPGN were upregulated and 98 transcripts such as ACAN, RUNX2, and C21orf96 were downregulated. In gene ontology (GO) analysis, cell signal-related GO terms were highly expressed. By contrast, catalysis GO terms and GO terms related to oxidoreductase were overrepresented in chondrogenically differentiated hNTSCs and osteogenically differentiated hNTSCs, respectively. CONCLUSION: Considering overall results, hNTSCs-specific genetic information may promote further studies on intracellular mechanisms defining key features of these cells.


Subject(s)
Mesenchymal Stem Cells , Turbinates , Adult , Cell Differentiation , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Microarray Analysis , Mixed Function Oxygenases/metabolism , Proto-Oncogene Proteins/metabolism , Stem Cells
2.
Otolaryngol Head Neck Surg ; 159(4): 774-782, 2018 10.
Article in English | MEDLINE | ID: mdl-29787348

ABSTRACT

Objective To produce alternate cell sources for tissue regeneration, human nasal septal cartilage-derived progenitor cells (NSPs) were tested to identify whether these cells meet the criteria of cartilage progenitor cells. We also evaluated the effects of prolonged cultivation on the characteristics of NSPs. Study Design In vitro study. Setting Academic research laboratory. Methods NSPs were isolated from discarded human nasal septal cartilage. NSPs were cultured for 10 passages. The expression of septal progenitor cell surface markers was assessed by fluorescence-activated cell sorting. Cell proliferation was measured with a cell-counting kit. Cytokine secretion was analyzed with multiplex immunoassays. Chondrogenic differentiation of NSPs without differentiation induction was analyzed with type II collagen immunohistochemistry. Cartilage-specific protein expression was evaluated by Western blotting. Under osteo- and adipodifferentiation media, 2 lineage differentiation potentials were evaluated by histology and gene expression analysis. Results Surface epitope analysis revealed that NSPs are positive for mesenchymal stem cells markers and negative for hematopoietic cell markers. Cultured NSPs showed sufficient cell expansion and chondrogenic potential, as demonstrated by immunostaining and expression of cartilage-specific protein. IL-6, IL-8, and transforming growth factor ß were secreted by over 200 pg/mL. The osteo- and adipodifferentiation potentials of NSPs were identified by histology and specific gene expression. The aforementioned characteristics were not influenced by prolonged cultivation. Conclusion NSPs represent an initial step toward creating a cell source from surgically discarded tissue that may prove useful in cartilage regeneration.


Subject(s)
Cell Differentiation/physiology , Chondrocytes/transplantation , Nasal Cartilages/cytology , Stem Cells , Tissue Engineering/methods , Adult , Blotting, Western , Cell Proliferation , Cells, Cultured , Female , Humans , Male , Nasal Cartilages/transplantation , Nasal Septum/surgery , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Tissue and Organ Harvesting/methods
3.
PLoS One ; 12(10): e0186249, 2017.
Article in English | MEDLINE | ID: mdl-29049314

ABSTRACT

We evaluated the effect of serum-free and xeno-cultivation (SFXFM) on the characterization, proliferation, and differentiation properties of human nasal stem cells (airway tissue; hTMSCs). hTMSCs were isolated from 10 patients, after which patient samples were separated into two groups, an SFXFM group and a control group. The control group was treated with bovine serum-containing medium. FACS analysis revealed that SFXFM-cultured hTMSCs maintained a characteristic mesenchymal stem cell phenotype. hTMSC proliferation was not influenced by SFXFM. In addition, upregulation of IL-8 and GM-CSF and downregulation of RANTES expression were shown in response to SFXFM. Moreover, two-lineage differentiation properties (osteocyte and adipocyte) of hTMSCs were enhanced under SFXFM. Finally, the genetic stability of SFXFM-cultured hTMSCs was demonstrated by normal karyotype results. SFXFM enables good expansion, multipotentiality, and normal genotype maintenance of MSCs. Moreover, this approach serves as a substitute to conventional media for the cultivation of capable MSCs for upcoming medical applications.


Subject(s)
Mesenchymal Stem Cells/cytology , Turbinates/cytology , Cell Differentiation , Cell Proliferation , Cell Separation , Cells, Cultured , Chemokine CCL5/metabolism , Culture Media, Serum-Free , Flow Cytometry , Genomic Instability , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-8/metabolism , Mesenchymal Stem Cells/metabolism
4.
J Biomed Mater Res A ; 105(8): 2291-2298, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28445604

ABSTRACT

Many extracellular matrix proteins have positive influences on the adhesion, proliferation, and differentiation of stem cells into specific cell linages. Fibulin-1 (FBLN1), a member of a growing family of extracellular glycoproteins, contributes to the structure of the extracellular matrix. Here, we investigated the effect of FBLN1 on the ability of human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs) to undergo osteogenic differentiation. After we generated recombinant FBLN1, the characteristics of FBLN1-treated hTMSCs were evaluated using MTT assay, ALP and mineralization activities, and quantitative real-time PCR. FBLN1 significantly enhanced the adhesion activity (p < 0.001) and proliferation of hTMSCs (p < 0.05). The ALP and mineralization activities of cells were dramatically increased (p < 0.01) after 9 and 12 days of FBLN1 treatment, respectively. This indicated the ability of FBLN1 to induce hTMSCs to differentiate into osteoblasts. Furthermore, increasing the mRNA levels of osteogenic marker genes, such as a transcriptional coactivator with a PDZ-binding motif (TAZ), alkaline phosphatase (ALP), collagen type I (Col I), and osteocalcin (OCN), improved bone repair and regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2291-2298, 2017.


Subject(s)
Calcium-Binding Proteins/metabolism , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis , Turbinates/cytology , Cell Differentiation , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Recombinant Proteins/metabolism
5.
Clin Exp Otorhinolaryngol ; 10(2): 137-142, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27464515

ABSTRACT

OBJECTIVES: Baso-apical gradients exist in various cochlear structures including medial olivocochlear (MOC) efferent system. This study investigated the cochlear regional differentials in the function and morphology of the MOC system, and addressed the functional implications of regional MOC efferent terminals (ETs) in the mouse cochlea. METHODS: In CBA/J mice, MOC reflex (MOCR) was assessed based on the distortion product otoacoustic emission in the absence and presence of contralateral acoustic stimulation. High, middle, and low frequencies were grouped according to a mouse place-frequency map. Cochlear whole mounts were immunostained for ETs with anti-α-synuclein and examined using confocal laser scanning microscopy. The diameters of ETs and the number of ETs per outer hair cell were measured from the z-stack images of the basal, middle and apical regions, respectively. RESULTS: The middle cochlear region expressed large, clustered MOC ETs with strong MOCR, the base expressed small, less clustered ETs with strong MOCR, and the apex expressed large, but less clustered ETs with weak MOCR. CONCLUSION: The mouse cochlea demonstrated regional differentials in the function and morphology of the MOC system. Strong MOCR along with superior MOC morphology in the middle region may contribute to 'signal detection in noise,' the primary efferent function, in the best hearing frequencies. Strong MOCR in spite of inferior MOC morphology in the base may reflect the importance of 'protection from noise trauma' in the high frequencies.

6.
Int J Pediatr Otorhinolaryngol ; 84: 6-11, 2016 May.
Article in English | MEDLINE | ID: mdl-27063745

ABSTRACT

OBJECTIVES: Allergy is considered as one of important etiologic factor of otitis media with effusion (OME). In present study, we evaluated the causal effect of allergy on OME in an animal model, and investigated the secondary effect of bacterial infection. METHODS: Allergy and control animals were subdivided into groups with and without intratympanic injection of lipopolysaccharide (IT-LPS). Allergic otitis media was induced via intraperitoneal ovo-albumin injection with intranasal challenge. We assessed the occurrence of OME in allergic animals and the effect of IT-LPS on allergic otitis media. We also investigated the Th1 and Th2 responses in the middle-ear mucosa. Hearing of the animals was measured by ABR and DPOAE. RESULTS: OME was observed in 75% of the allergic animals. After IT-LPS, 100% of the control and allergy groups showed otitis media. Light microscopy revealed that the middle-ear mucosa of animals of both groups also was significantly increased after IT-LPS, and the Th1 response (IL-2 and IFN-γ) and Th2 response (IL-5 and IL-13) cytokines were expressed at higher levels in the allergy group with IT-LPS than in control group with IT-LPS. Hearing tests between the allergy and control group with IT-LPS did not reveal any differences. CONCLUSION: Our findings may be direct evidence of an allergic causal effect on OME. Th2 response cytokines were strongly expressed in allergic OME, and the inflammatory reaction to LPS was more intense in the allergic group, which indicates that otitis media related to allergy can be severely aggravated by an inflammatory reaction to bacterial infection.


Subject(s)
Hypersensitivity/complications , Otitis Media with Effusion/etiology , Animals , Biomarkers/metabolism , Cytokines/metabolism , Hypersensitivity/immunology , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred BALB C , Otitis Media with Effusion/microbiology , Otitis Media with Effusion/pathology , Otitis Media with Effusion/physiopathology , Pseudomonas aeruginosa
7.
PLoS One ; 10(9): e0138041, 2015.
Article in English | MEDLINE | ID: mdl-26376485

ABSTRACT

The characteristics of mesenchymal stem cells (MSCs) derived from human turbinates (hTMSCs) have not been investigated in allergic rhinitis. We evaluated the influence of allergic state of the donor on the characteristics, proliferation, and differentiation potential of hTMSCs, compared with hTMSCs derived from non-allergic patients. hTMSCs were isolated from five non-allergic and five allergic patients. The expression of toll-like receptors (TLRs) in hTMSCs was measured by FACS, and cell proliferation was measured using a cell counting kit. Cytokine secretion was analyzed using multiplex immunoassays. The osteogenic, chondrogenic, and adipogenic differentiation potentials of hTMSCs were evaluated by histology and gene expression analysis. In allergic patients, FACS analysis showed that TLR3 and TLR4 were more highly expressed on the surface of hTMSCs than TLR2 and TLR5. The proliferation of hTMSCs was not influenced by the presence of TLR priming. The expression of IL-6, IL-8, IL-12, IP-10, and RANTES was upregulated after the TLR4 priming. The differentiation potential of hTMSCs was not influenced by TLR priming. These characteristics of hTMSCs were similar to those of hTMSCs from non-allergic patients. We conclude that the allergic condition of the donor does not influence TLR expression, proliferation, or immunomodulatory potential of hTMSCs.


Subject(s)
Allergens/immunology , Antigens, Surface/immunology , Mesenchymal Stem Cells/pathology , Rhinitis, Allergic/pathology , Rhinitis, Atrophic/pathology , Turbinates/pathology , Antigens, Surface/metabolism , Blotting, Western , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Flow Cytometry , Humans , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Rhinitis, Allergic/immunology , Rhinitis, Allergic/metabolism , Rhinitis, Atrophic/immunology , Rhinitis, Atrophic/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Turbinates/immunology , Turbinates/metabolism
8.
Otol Neurotol ; 36(5): 755-62, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25894725

ABSTRACT

OBJECTIVE: Dexamethasone is commonly used clinically to treat noise-induced hearing loss (NIHL) because the drug exerts multiple anti-inflammatory effects. In the present study, we investigated the post-noise therapeutic effects of dexamethasone given systemically or via intratympanic injection in the mouse. ANIMALS: Twenty-four C57BL/6J mice were used. Eighteen experimental mice were exposed to 110 dB sound pressure level white noise and then divided into three groups: the noise, intraperitoneal dexamethasone injection (IP), and intratympanic dexamethasone injection (IT) groups. METHODS: Dexamethasone (3 mg/kg/d) was injected intraperitoneally for five successive days in the IP group. Intratympanic injections were given on post-noise days 1 and 4 in the IT group. We compared hearing levels, the architecture of the organ of Corti (OC), and the microscopic appearance of the medial olivocochlear efferent terminals (MOC ETs) among the groups. RESULTS: Both the IP and IT groups exhibited hearing recovery as revealed by auditory brainstem responses (ABRs), but recovery was not apparent in distortion product otoacoustic emissions (DPOAEs). OC degeneration as revealed by light microscopy was most extensive in the noise group and least extensive in the IP group. Scanning electron microscopy showed that the OC ultrastructure was better preserved in the IP than the IT group. Confocal microscopy showed that the ETs were shrunken in all noise-exposed groups as compared to the control group, but more shrunken in the dexamethasone-treated groups. Transmission electron microscopy showed that the MOC ET-outer hair cell (OHC) synapses were damaged in all noise-exposed groups, but the extent of degeneration was less in the IT than in the noise group. CONCLUSION: Dexamethasone exerts reliable therapeutic effects when used to treat NIHL. It seems that the protective effects may differ by the routes of administration as the OCs were better preserved in the IP group and the ET-OHC synapses were more intact in the IT group.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Dexamethasone/administration & dosage , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/pathology , Animals , Disease Models, Animal , Ear, Middle/drug effects , Evoked Potentials, Auditory, Brain Stem/drug effects , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/ultrastructure , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron, Scanning , Otoacoustic Emissions, Spontaneous/drug effects
9.
Noise Health ; 16(72): 257-64, 2014.
Article in English | MEDLINE | ID: mdl-25209034

ABSTRACT

Renexin, a compound of cilostazol and ginkgo biloba extract, has been reported to produce neuroprotective effects through antioxidant, antiplatelet, and vasodilatory mechanisms. This study was designed to investigate the protective effects of renexin on hearing, the organ of Corti (OC), and medial olivocochlear efferents against noise-induced damage. C57BL/6 mice were exposed to 110 dB SPL white noise for 60 min and then randomly divided into three groups: high- and low-dose renexin-treated groups and noise only group. Renexin were administered for 7 days: 90 mg/kg to the low-dose, and 180 mg/kg to the high-dose groups. All mice, including the controls underwent hearing tests on postnoise day 8 and were killed for cochlear harvest. We compared the hearing thresholds and morphology of the OC and cochlear efferents across the groups. The renexin-treated groups recovered from the immediate threshold shifts in a dose-dependent manner, while the noise group showed a permanent hearing loss. The renexin-treated ears demonstrated less degeneration of the OC. The diameters of the efferent terminals labeled with α-synuclein were preserved in the high-dose renexin-treated group. In the western blot assay of the cochlear homogenates, the treated groups displayed stronger expressions of α-synuclein than the noise and control groups, which may indicate that noise-induced enhanced activity of the cochlear efferent system was protected by renexin. Our results suggest that pharmacologic treatment with renexin is hopeful to reduce or prevent noise-induced hearing loss as a rescue regimen after noise exposure.


Subject(s)
Disease Models, Animal , Hearing Loss, Noise-Induced/physiopathology , Plant Extracts/pharmacology , Tetrazoles/pharmacology , Animals , Blotting, Western , Cell Death/drug effects , Cell Death/physiology , Cochlea/drug effects , Cochlea/pathology , Cochlea/physiopathology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/pathology , Hair Cells, Auditory/physiology , Hearing Loss, Noise-Induced/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron, Scanning , Organ of Corti/drug effects , Organ of Corti/pathology , Organ of Corti/physiopathology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , alpha-Synuclein/analysis
10.
Noise Health ; 16(70): 149-56, 2014.
Article in English | MEDLINE | ID: mdl-24953880

ABSTRACT

The aim of the following study is to evaluate immediate protective effect of ear plug from noise morphologically and functionally. An 1-month aged 29 male C57BL/6 mice. Subjects were divided into four groups as normal control(G1), bilaterally plugged group (G2), unilaterally plugged group (G3) and noise control group (G4) and later 3 groups were exposed to 110 sound pressure level white noise for 60 min. Immediately after noise exposure, audiologic tests were performed and cochlear morphology and expression levels of a-synuclein in the cochlea were investigated. There were no functional changes in G2 and plugged ears of G3 after noise exposure, whereas unplugged ears of G3 and G4 showed significant hearing loss. In morphological study, there were a significant degeneration of the organ of Corti and mean number and diameter of efferent buttons, in unplugged ears of G3 and G4. Plugged ears of G3 also showed mild changes in morphological study. Reduction of a-synuclein was observed at the efferent terminals or cochlear extracts after noise exposure. The protective effect of ear plug on noise exposure was proven morphologically and functionally in the animal model of noise-induced hearing loss. Further study on cellular or ultrastructural level with ear plug will be needed to reveal more precise mechanism.


Subject(s)
Ear Protective Devices , Hearing Loss, Noise-Induced/pathology , Hearing Loss, Noise-Induced/prevention & control , Animals , Blotting, Western , Cochlea/pathology , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Scanning
11.
Auris Nasus Larynx ; 40(1): 11-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22364846

ABSTRACT

OBJECTIVES: This study was conducted to compare morphologic and audiologic changes after noise exposure in two different strains of mice (CBA and C57) and to create morphologically proven models of noise-induced hearing loss. METHODS: Mice were exposed to white noise at 110-dB sound-pressure level for 60 minutes at the age of 1 month. Hearing thresholds and outer hair cell functions were evaluated by auditory brainstem response recordings and distortion product otoacoustic emission immediately and 22 days after noise exposure. Cochlear pathology was observed and compared by light and electron microscopic studies. RESULTS: Both mice strains showed hearing threshold shifts with decreased outer hair cell function immediately and 22 days after noise exposure. More severe auditory brainstem response threshold shifts were observed in C57 mice compared with CBA mice at click, 8-, 16-, and 32-kHz tone-burst stimuli. A cochlear morphologic study demonstrated predominant outer hair cell degeneration at all turns of the cochlea; degeneration was most severe at the basal turn in both mice strains. A scanning electron microscopic study revealed more severe ultrastructural damage of outer hair cells at each turn of the cochlea in C57 mice. The lateral wall of the cochlea was more severely degenerated in CBA mice. CONCLUSION: Both mice strains showed consistent, permanent noise-induced hearing loss with different susceptibilities and site vulnerabilities. Further studies to investigate the mechanism of the different degree and cochlear site vulnerability to noise exposure between two mice strains are necessary.


Subject(s)
Cochlea/pathology , Hearing Loss, Noise-Induced/pathology , Animals , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Hair Cells, Auditory, Outer/ultrastructure , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Microscopy , Microscopy, Electron, Scanning , Otoacoustic Emissions, Spontaneous
12.
Clin Exp Otorhinolaryngol ; 3(3): 126-35, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20978629

ABSTRACT

OBJECTIVES: Morphological studies on presbycusis, or age-related hearing loss, have been performed in several different strains of mice that demonstrate hearing loss with auditory pathology. The C57BL/6 (C57) mouse is a known model of early onset presbycusis, while the CBA mouse is characterized by relatively late onset hearing loss. We performed this study to further understand how early onset hearing loss is related with the aging process of the cochlea. METHODS: We compared C57 cochlear pathology and its accompanying apoptotic processes to those in CBA mice. Hearing thresholds and outer hair cell functions have been evaluated by auditory brainstem response (ABR) recordings and distortion product otoacoustic emission (DPOAE). RESULTS: ABR recordings and DPOAE studies demonstrated high frequency hearing loss in C57 mice at P3mo of age. Cochlear morphologic studies of P1mo C57 and CBA mice did not show differences in the organ of Corti, spiral ganglion, or stria vascularis. However, from P3mo and onwards, a predominant early outer hair cell degeneration at the basal turn of the cochlea in C57 mice without definitive degeneration of spiral ganglion cells and stria vascularis/spiral ligament, compared with CBA mice, was observed. Additionally, apoptotic processes in the C57 mice also demonstrated an earlier progression. CONCLUSION: These data suggest that the C57 mouse could be an excellent animal model for early onset 'sensory' presbycusis in their young age until P6mo. Further studies to investigate the intrinsic or extrinsic etiologic factors that lead to the early degeneration of organ of Corti, especially in the high frequency region, in C57 mice may provide a possible pathological mechanism of early onset hearing loss.

SELECTION OF CITATIONS
SEARCH DETAIL
...