Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 9(4): e94238, 2014.
Article in English | MEDLINE | ID: mdl-24736658

ABSTRACT

ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Sequence Deletion/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Zea mays/growth & development , Zea mays/genetics , Active Transport, Cell Nucleus , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Body Weight/genetics , Cell Nucleus/metabolism , Consensus Sequence , Gene Expression , Molecular Sequence Data , Protein Multimerization , Protein Structure, Quaternary , Protoplasts/metabolism , Reproduction , Transcription Factors/chemistry , Transcription, Genetic , Zea mays/cytology , Zea mays/physiology
3.
Arch Biochem Biophys ; 402(2): 259-67, 2002 Jun 15.
Article in English | MEDLINE | ID: mdl-12051672

ABSTRACT

Acetyl-coenzyme A synthetase (ACS) is a plastidic enzyme that forms acetyl-coenzyme A (acetyl-CoA) from acetate and coenzyme A using the energy from ATP. Traditionally it has been thought to be the major source for the production of acetyl-CoA destined for fatty acid formation. Recent work suggested that the accumulation of lipids in developing Arabidopsis seeds was more closely correlated with the expression of pyruvate dehydrogenase complex than with the expression of ACS, suggesting that most of the carbon for fatty acid formation in the plastids of seeds comes from pyruvate rather than from acetate. To explore the role of this enzyme, Arabidopsis plants with altered amounts of ACS were generated by overexpressing its cDNA in either the sense or the antisense configuration. The resulting plants had in vitro enzyme activities that ranged from about 5% to over 400% of wild-type levels. The rate of [1-14C]acetate conversion into fatty acids was closely related to the in vitro ACS activity, showing that the amount of enzyme clearly limited the capacity of leaves to convert exogenous acetate to fatty acids. There was, however, no relationship between the ACS level and the capacity of the plants to incorporate 14CO2 into 14C-labeled fatty acids. These data strongly support the idea that, although plants can convert acetate into fatty acids, relatively little carbon moves through this pathway under normal conditions.


Subject(s)
Arabidopsis/enzymology , Plant Leaves/enzymology , Arabidopsis/genetics , Arabidopsis/physiology , Carbon Dioxide/metabolism , Diamide/pharmacology , Dithiothreitol/pharmacology , Immunoblotting , Lipid Metabolism , Mutation , Oxidation-Reduction , Plant Leaves/genetics , Plant Leaves/physiology , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL