Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559755

ABSTRACT

Glass-fiber-reinforced pipe (GRP) is a strong alternative to many other materials, such as cast iron and concrete. It is characterized by high corrosion resistance, resulting in good erosion/corrosion. For the erosion/corrosion test, commercially available GRPs were used, which are frequently utilized for oil field wastewater in harsh environments. This type of GRP material was subjected to simulated conditions replicating in situ or harsh environments. An extensive experiment was conducted. Three quantities of abrasive sand (250 g, 400 g and 500 g with a size of 65 µm) were mixed with 0.015 m3 of water. The abrasive sand samples were taken at a 90 degree angle from the wall of the cylinder tubes. Three flow rate conditions were selected, 0.01 m3/min, 0.0067 m3/min and 0.01 m3/min, with 10 wt.% chlorine. Furthermore, these tests were conducted at five different times: 1 h, 2 h, 3 h, 4 h and 5 h. The results show that the erosion rate increased both with an increasing amount of abrasive sand and with increasing flow rate. The maximum value for the erosion rate was more than three for a flow rate of 0.015 m3 with chlorine for 500 g of sand. The corrosion rate also showed the same trend, with the maximum corrosion rate being reached under the same conditions. It was found that the corrosion rate largely depends on the amount of weight loss, which is an indicator of the erosion effect. Therefore, GFRP provides better erosion/corrosion resistance in a harsh environment or in situ conditions.

2.
Materials (Basel) ; 14(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885567

ABSTRACT

In this paper, the mechanical properties of fiber-reinforced epoxy laminates are experimentally tested. The relaxation behavior of carbon and glass fiber composite laminates is investigated at room temperature. In addition, the impact strength under drop-weight loading is measured. The hand lay-up technique is used to fabricate composite laminates with woven 8-ply carbon and glass fiber reinforced epoxy. Tensile tests, cyclic relaxation tests and drop weight impacts are carried out on the carbon and glass fiber-reinforced epoxy laminates. The surface release energy GIC and the related fracture toughness KIC are important characteristic properties and are therefore measured experimentally using a standard test on centre-cracked specimens. The results show that carbon fiber-reinforced epoxy laminates with high tensile strength give high cyclic relaxation performance, better than the specimens with glass fiber composite laminates. This is due to the higher strength and stiffness of carbon fiber-reinforced epoxy with 600 MPa compared to glass fiber-reinforced epoxy with 200 MPa. While glass fibers show better impact behavior than carbon fibers at impact energies between 1.9 and 2.7 J, this is due to the large amount of epoxy resin in the case of glass fiber composite laminates, while the impact behavior is different at impact energies between 2.7 and 3.4 J. The fracture toughness KIC is measured to be 192 and 31 MPa √m and the surface energy GIC is measured to be 540.6 and 31.1 kJ/m2 for carbon and glass fiber-reinforced epoxy laminates, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...