Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(27): 6102-6112, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37384541

ABSTRACT

Decreasing the melting point (Tm) of a mixture is of interest in cryopreservatives, molten salts, and battery electrolytes. One general strategy to decrease Tm, exemplified by deep eutectic solvents, is to mix components with favorable (negative) enthalpic interactions. We demonstrate a complementary strategy to decrease Tm by mixing many components with neutral or slightly positive enthalpic interactions, using the number of components (n) to increase the entropy of mixing and decrease Tm. In theory, under certain conditions this approach could achieve an arbitrarily low Tm. Furthermore, if the components are small redox-active molecules, such as the benzoquinones studied here, this approach could lead to high energy density flow battery electrolytes. Finding the eutectic composition of a high-n mixture can be challenging due to the large compositional space yet is essential for ensuring the existence of a purely liquid phase. We reformulate and apply fundamental thermodynamic equations to describe high-n eutectic mixtures of small redox-active molecules (benzoquinones and hydroquinones). We illustrate a novel application of this theory by tuning the entropy of melting, rather than the enthalpy, in systems highly relevant to energy storage. We demonstrate with differential scanning calorimetry measurements that 1,4-benzoquinone derivatives exhibit eutectic mixing that decreases their Tm, despite slightly positive enthalpies of mixing (0-5 kJ/mol). By rigorously investigating all 21 binary mixtures of a set of seven 1,4-benzoquinone derivatives with alkyl substituents (Tm's between 44 and 120 °C), we find that the eutectic melting point of a mixture of all seven achieves a large decrease in Tm to -6 °C. We further determine that the regular solution model shows improvement over an ideal solution model in predicting the eutectic properties for this newly investigated type of mixture composed of many small redox-active organic molecules.

2.
Proc Natl Acad Sci U S A ; 108(51): 20428-33, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22143760

ABSTRACT

Capturing carbon dioxide from the atmosphere ("air capture") in an industrial process has been proposed as an option for stabilizing global CO(2) concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO(2), making it cost competitive with mainstream CO(2) mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO(2) emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO(2) from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO(2), requiring it to be powered by CO(2)-neutral power sources in order to be CO(2) negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO(2), based on experience with as-built large-scale trace gas removal systems.


Subject(s)
Air Pollution , Air/analysis , Carbon Dioxide/chemistry , Biomass , Environmental Restoration and Remediation/methods , Gases , Models, Statistical , Renewable Energy , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...