Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 85(13): 538-552, 2022 07 03.
Article in English | MEDLINE | ID: mdl-35272567

ABSTRACT

Recent findings indicate that incidental ingestion of soil by humans primarily involves soil particles <150 µm, rather than <250 µm-sized fraction previously used for most oral bioaccessibility and bioavailability studies. It was postulated that a greater soil surface area in the finer fraction (<150 versus <250 µm) might increase oral bioaccessibility of arsenic (As) in soil. Bioaccessibility and concentrations of As were compared in <150 and <250 µm fractions of 18 soil samples from a variety of arsenic-contaminated sites. The two methods used to measure bioaccessibility were compared - EPA Method 1340 and the California Arsenic Bioaccessibility (CAB) method. Arsenic concentrations were nearly the same or higher in the <150 fraction compared with <250 µm. EPA Method 1340 and the CAB method presented significantly different bioaccessibility results, as well as estimated relative oral bioavailability (RBA) based upon algorithms specific to the methods, but there was no marked difference for <150 and <250 µm soil fractions within either method. When compared with RBA determined previously for these soil samples in vivo in non-human primates, EPA Method 1340 was generally more predictive than the CAB method. Data suggest that soil- or site-specific factors control bioaccessibility under either method and that the test method selected is more important than the particle size fraction (<150 or <250) in using these in vitro methods to predict As RBA for use in risk assessment.


Subject(s)
Arsenic , Soil Pollutants , Animals , Biological Availability , Particle Size , Soil
2.
Sci Total Environ ; 824: 153802, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35150681

ABSTRACT

Aboveground net primary productivity (ANPP) of an ecosystem is among the most important metrics of valued ecosystem services. Measuring the efficiency scores of ecological production (ESEP) based on ANPP using relevant variables is valuable for identifying inefficient sites. The efficiency scores computed by the Data Envelopment Analysis (DEA) may be influenced by the number of input variables incorporated into the models and two DEA settings-orientations and returns-to-scales (RTSs). Therefore, the objectives were threefold to: (1) identify soil-environmental variables relevant to ANPP, (2) assess the sensitivity of ESEP to the number of input variables and DEA settings, and (3) assess local management relations with ESEP. The ANPP rates were calculated for pine forests in the southeastern U.S. where 10 management types were used. This was followed by an all-relevant variable selection technique based on 696 variables that cover biotic, pedogenic, climatic, geological, and topographical factors. Five minimal-optimal variable selection techniques were further applied to create five parsimonious sets that contain a different number of variables used as DEA inputs. After setting ANPP as the output variable, two DEA orientations (input/output) and six RTS were applied to compute ESEP. The variable selection methods succeeded in objectively identifying the major factors relevant to ANPP variation. The site index showed the highest correlation with ANPP (r = 0.39), while various precipitation factors were negatively correlated (r = - 0.15~ - 0.29, p < 0.01). Parsimonious ESEP models observed a decrease in score variances as the number of input variables increased. Various RTS produced similar scores across orientations. Of the DEA settings, an output orientation with decreasing RTS produced the most progressive ESEP with large variation. Results also suggested that macro- and micronutrient fertilization is the best combination of management strategies to achieve high ESEP. This holistic benchmark approach can be applied to other ecological functions in diverse regions.


Subject(s)
Ecosystem , Soil , Forests , Southeastern United States
3.
Proc Natl Acad Sci U S A ; 117(15): 8374-8381, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32229569

ABSTRACT

In the 16th century, the Calusa, a fisher-gatherer-hunter society, were the most politically complex polity in Florida, and the archaeological site of Mound Key was their capital. Based on historic documents, the ruling elite at Mound Key controlled surplus production and distribution. The question remains exactly how such surplus pooling occurred and when such traditions were elaborated on and reflected in the built environment. Our work focuses on the "watercourts" and associated areas at Mound Key. These subrectangular constructions of shell and other sediments around centralized inundated areas have been variously interpreted. Here, we detail when these enclosures were constructed and their engineering and function. We argue that these structures were for large surplus capture and storage of aquatic resources that were controlled and managed by corporate groups.

4.
Sci Total Environ ; 703: 134615, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31767338

ABSTRACT

The pedosphere is the largest terrestrial reservoir of organic carbon, yet soil-carbon variability and its representation in Earth system models is a large source of uncertainty for carbon-cycle science and climate projections. Much of this uncertainty is attributed to local and regional-scale variability, and predicting this variation can be challenging if variable selection is based solely on a priori assumptions due to the scale-dependent nature of environmental determinants. Data mining can optimize predictive modeling by allowing machine-learning algorithms to learn from and discover complex patterns in large datasets that may have otherwise gone unnoticed, thus increasing the potential for knowledge discovery. In this analysis, we identify important, regional-scale determinants for top- and subsoil-carbon stabilization in production forestland across the southeastern US. Specifically, we apply recursive feature elimination to a large suite of socio-environmental data to strategically select a parsimonious, yet highly predictive covariate set. This is achieved by recursively considering smaller and smaller covariate sets-or features-by first training the estimator on the full set to obtain feature importance. The least important features are pruned, and the procedure is recursively repeated until a desired number of covariates is identified. We show that although carbon ranges from 0.3 to 8.2 kg m-2 in the topsoil (0 to 20 cm), and from 0.4 to 17.6 kg m-2 in the subsoil (20 to 100 cm), this variability is predictably distributed with precipitation, soil moisture, nitrogen and sand content, gamma ray emissions, mean annual minimum temperature, and elevation. From our spatial predictions, we estimate that 2.6 Pg of soil carbon is currently stabilized in the upper 100 cm of production forestland, which covers 34.7 million ha in the southeastern US.

5.
Sci Rep ; 9(1): 4495, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30872686

ABSTRACT

As bedrock weathers to regolith - defined here as weathered rock, saprolite, and soil - porosity grows, guides fluid flow, and liberates nutrients from minerals. Though vital to terrestrial life, the processes that transform bedrock into soil are poorly understood, especially in deep regolith, where direct observations are difficult. A 65-m-deep borehole in the Calhoun Critical Zone Observatory, South Carolina, provides unusual access to a complete weathering profile in an Appalachian granitoid. Co-located geophysical and geochemical datasets in the borehole show a remarkably consistent picture of linked chemical and physical weathering processes, acting over a 38-m-thick regolith divided into three layers: soil; porous, highly weathered saprolite; and weathered, fractured bedrock. The data document that major minerals (plagioclase and biotite) commence to weather at 38 m depth, 20 m below the base of saprolite, in deep, weathered rock where physical, chemical and optical properties abruptly change. The transition from saprolite to weathered bedrock is more gradational, over a depth range of 11-18 m. Chemical weathering increases steadily upward in the weathered bedrock, with intervals of more intense weathering along fractures, documenting the combined influence of time, reactive fluid transport, and the opening of fractures as rock is exhumed and transformed near Earth's surface.

6.
Glob Chang Biol ; 21(2): 986-96, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25155991

ABSTRACT

Reforestation of formerly cultivated land is widely understood to accumulate above- and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above- and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0-7.5 cm) were offset by significant SOM losses in subsoils (35-60 cm). Here, we extended the observation period in this long-term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light-fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay-sized particles. Isotopic signatures showed relatively large accumulations of forest-derived carbon in surface soils, and little to no accumulation of forest-derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long-term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long-term soil data deeper than 30 cm.


Subject(s)
Biodiversity , Carbon/analysis , Forests , Nitrogen/analysis , Soil/chemistry , South Carolina
SELECTION OF CITATIONS
SEARCH DETAIL
...