Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 949, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36653416

ABSTRACT

During a large-scale radiological event such as an improvised nuclear device detonation, many survivors will be shielded from radiation by environmental objects, and experience only partial-body irradiation (PBI), which has different consequences, compared with total-body irradiation (TBI). In this study, we tested the hypothesis that applying machine learning to a combination of radiation-responsive biomarkers (ACTN1, DDB2, FDXR) and B and T cell counts will quantify and distinguish between PBI and TBI exposures. Adult C57BL/6 mice of both sexes were exposed to 0, 2.0-2.5 or 5.0 Gy of half-body PBI or TBI. The random forest (RF) algorithm trained on ½ of the data reconstructed the radiation dose on the remaining testing portion of the data with mean absolute error of 0.749 Gy and reconstructed the product of dose and exposure status (defined as 1.0 × Dose for TBI and 0.5 × Dose for PBI) with MAE of 0.472 Gy. Among irradiated samples, PBI could be distinguished from TBI: ROC curve AUC = 0.944 (95% CI: 0.844-1.0). Mouse sex did not significantly affect dose reconstruction. These results support the hypothesis that combinations of protein biomarkers and blood cell counts can complement existing methods for biodosimetry of PBI and TBI exposures.


Subject(s)
Radiation Exposure , Whole-Body Irradiation , Male , Female , Mice , Animals , Mice, Inbred C57BL , Biomarkers , Whole-Body Irradiation/adverse effects , Blood Cell Count , Radiation Exposure/adverse effects , Dose-Response Relationship, Radiation , Radiation Dosage
2.
Sci Rep ; 10(1): 12716, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728041

ABSTRACT

Following a large-scale radiological incident, there is a need for FDA-approved biodosimetry devices and biomarkers with the ability to rapidly determine past radiation exposure with sufficient accuracy for early population triage and medical management. Towards this goal, we have developed FAST-DOSE (Fluorescent Automated Screening Tool for Dosimetry), an immunofluorescent, biomarker-based system designed to reconstruct absorbed radiation dose in peripheral blood samples collected from potentially exposed individuals. The objective of this study was to examine the performance of the FAST-DOSE assay system to quantify intracellular protein changes in blood leukocytes for early biodosimetry triage from humanized NOD-scid-gamma (Hu-NSG) mice and non-human primates (NHPs) exposed to ionizing radiation up to 8 days after radiation exposure. In the Hu-NSG mice studies, the FAST-DOSE biomarker panel was able to generate delivered dose estimates at days 1, 2 and 3 post exposure, whereas in the NHP studies, the biomarker panel was able to successfully classify samples by dose categories below or above 2 Gy up to 8 days after total body exposure. These results suggest that the FAST-DOSE bioassay has large potential as a useful diagnostic tool for rapid and reliable screening of potentially exposed individuals to aid early triage decisions within the first week post-exposure.


Subject(s)
Leukocytes, Mononuclear/chemistry , Radiation Exposure/analysis , Radiometry/methods , Whole-Body Irradiation/methods , Animals , Cell Line , Female , High-Throughput Screening Assays , Humans , Male , Mice , Mice, SCID , Models, Animal , Primates , Radiation Dosage
3.
Biochemistry ; 57(43): 6187-6200, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30272959

ABSTRACT

A novel family of bacterial hemoproteins named NosP has been discovered recently; its members are proposed to function as nitric oxide (NO) responsive proteins involved in bacterial group behaviors such as quorum sensing and biofilm growth and dispersal. Currently, little is known about molecular activation mechanisms in NosP. Here, functional studies were performed utilizing the distinct spectroscopic characteristics associated with the NosP heme cofactor. NosPs from Pseudomonas aeruginosa ( Pa), Vibrio cholerae ( Vc), and Legionella pneumophila ( Lpg) were studied in their ferrous unligated forms as well as their ferrous CO, ferrous NO, and ferric CN adducts. The resonance Raman (rR) data collected on the ferric forms strongly support the existence of a distorted heme cofactor, which is a common feature in NO sensors. The ferrous spectra exhibit a 213 cm-1 feature, which is assigned to the Fe-Nhis stretching mode. The Fe-C and C-O frequencies in the spectra of ferrous CO NosP complexes are inversely correlated with relatively similar frequencies, consistent with a proximal histidine ligand and a relatively hydrophobic environment. The rR spectra obtained for isotopically labeled ferrous NO adducts provide evidence of formation of a 5-coordinate NO complex, resulting from proximal Fe-Nhis cleavage, which is believed to play a role in biological heme-NO signal transduction. Additionally, we found that of the three NosPs studied, Lpg NosP contains the most electropositive ligand binding pocket, while Pa NosP has the most electronegative ligand binding pocket. This pattern is also observed in the measured heme reduction potentials for these three proteins, which may indicate distinct functions for each.


Subject(s)
Hemeproteins/chemistry , Hemeproteins/metabolism , Iron/metabolism , Legionella pneumophila/enzymology , Nitric Oxide/metabolism , Pseudomonas aeruginosa/enzymology , Vibrio cholerae/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Quorum Sensing
SELECTION OF CITATIONS
SEARCH DETAIL
...