Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 900: 165811, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37506902

ABSTRACT

Adopting land management practices that increase the stock of soil organic carbon (SOC) in croplands is widely promoted as a win-win strategy to enhance soil health and mitigate climate change. In this context, the definition of reference SOC content and stock values is needed to provide reliable targets to farmers, policymakers, and stakeholders. In this study, we used the LUCAS dataset to compare different methods for evaluating reference SOC content and stock values in European croplands topsoils (0-20 cm depth). Methods gave generally similar estimates although being built on very different assumptions. In the absence of an objective criterion to establish which approach is the most suitable to determine SOC reference values, we propose an ensemble modelling approach that consists in extracting the estimates using different relevant methods and retaining the median value among them. Interestingly, this approach led us to select values from the three different approaches with similar frequencies. Using estimated bulk density values, we obtained a first rough estimate of 3.5 Gt C of SOC storage potential in the cropland topsoils that we interpret as a long-term aspirational target that would be reachable only under extreme changes in agricultural practices. The use of additional methods in the ensemble modelling approach and more valid statistical spatial estimates may further refine our approach designed for the estimation of SOC reference values for croplands.

2.
J Hydrol (Amst) ; 593: 125890, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33612857

ABSTRACT

Soil structure is an indicator of soil quality and its alterations following cropping system conversion or fertilization change evolve slowly. How such alterations vary with scale remains elusive. We investigated this based on the Rothamsted long-term wheat experiment (since 1843) in the UK. Triplicate cores 7 cm high and 10 cm in diameter were taken from plots that have been under different fertilizations or returned to natural woodland for more than one century for imaging using X-ray computed tomography with the voxel size being 40 µm. We then broke each core and sampled three aggregates from it to scan with the voxel size being 1.5 µm. For each core and aggregate sample, we calculated its pore size distribution, permeability and tortuosity. The results showed that the fertilization change >170 years ago reshaped the soil structure differently between the core scale and the aggregate scale. Macro-porosity of the pores (>40 µm) in the cores unfertilized or fertilized with inorganic fertilizers was low and the pores were poorly connected in the top 10 cm of soil, compared to those given farmyard manure or in the woodland. In all treatments, the pores in the core images were hydraulically anisotropic with their permeability in the horizontal direction being higher than that in the vertical direction, whereas the aggregates were comparatively isotropic. The fertilization affected image porosity and permeability at core scale more significantly than at aggregate scale, and the aggregates fertilized with farmyard manure and in the woodland were more permeable than the aggregates in other treatments. It was also found that compared to no-fertilization or fertilization with complete fertilizers, fertilizing without phosphorus over the past 20 years increased the porosity and permeability of the aggregates but not of the cores. Fertilization with inorganic fertilizers increased the tortuosity of the macropores in the cores but not of the intra-aggregate pores, compared to no-fertilization. Porosity-permeability relationship for aggregates unfertilized or fertilized with inorganic fertilisers followed a power law with R 2 > 0.8. In contrast, the permeability of the aggregates in farmyard manure and in the woodland trended differently as their porosity increased. The results also revealed that the transport ability of the aggregates and cores responded differently to carbon in that with soil carbon increasing, the permeability of the aggregates increased asymptotically while the permeability of the cores, especially its horizontal component, increased exponentially.

3.
Sci Rep ; 10(1): 10649, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32606383

ABSTRACT

We use a unique set of terrestrial experiments to demonstrate how soil management practises result in emergence of distinct associations between physical structure and biological functions. These associations have a significant effect on the flux, resilience and efficiency of nutrient delivery to plants (including water). Physical structure, determining the air-water balance in soil as well as transport rates, is influenced by nutrient and physical interventions. Contrasting emergent soil structures exert selective pressures upon the microbiome metagenome. These selective pressures are associated with the quality of organic carbon inputs, the prevalence of anaerobic microsites and delivery of nutrients to microorganisms attached to soil surfaces. This variety results in distinctive gene assemblages characterising each state. The nature of the interactions provide evidence that soil behaves as an extended composite phenotype of the resident microbiome, responsive to the input and turnover of plant-derived organic carbon. We provide new evidence supporting the theory that soil-microbe systems are self-organising states with organic carbon acting as a critical determining parameter. This perspective leads us to propose carbon flux, rather than soil organic carbon content as the critical factor in soil systems, and we present evidence to support this view.


Subject(s)
Metagenome , Microbiota , Soil Microbiology , Soil/chemistry , Carbon Cycle , Phenotype
4.
Sci Rep ; 9(1): 7473, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097750

ABSTRACT

Cover crops (plants grown in an agricultural rotation between cash crops) can significantly improve soil quality via sequestering carbon, retaining nutrients, decreasing soil erosion, and maintaining belowground biodiversity. However, little is known about the effects of such plants upon soil structure. The aim of the study was to assess the impact of four species typically used as cover crops and which have contrasting root architecture (viz. clover, black oat, phacelia, tillage radish) on soil structural genesis and the associated modification of microbial community structure in a clay soil. The four plant species were grown in a replicated pot experiment with sieved soil (<2 mm), with unplanted soil as control for 8 weeks. X-ray Computed Tomography was used to quantify the formation of pore networks in 3D and phospholipid fatty acid analysis was performed to characterise the microbial community phenotype. Black oats developed a greater soil-pore connectivity than the other species throughout the growth period, whereas phacelia decreased both the porosity and pore-connectivity. The microbial community phenotype under phacelia was notably different from the other species, with a greater proportion of fungal markers. Thus, different plant species have differential effects upon soil structural genesis and microbial community phenotype, which provides evidence that certain species may be more suitable as cover crops in terms of soil structural conditioning depending upon specific contexts.


Subject(s)
Crops, Agricultural/growth & development , Microbiota , Soil Microbiology , Soil/chemistry , Avena/growth & development , Avena/microbiology , Brassicaceae/growth & development , Brassicaceae/microbiology , Crop Production/methods , Crops, Agricultural/microbiology
5.
Geoderma ; 332: 73-83, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30559518

ABSTRACT

Soil delivers fundamental ecosystem functions via interactions between physical and biological processes mediated by soil structure. The structure of soil is also dynamic and modified by natural factors and management intervention. The aim of this study was to investigate the effects of different cropping systems on soil structure at contrasting spatial scales. Three systems were studied in replicated plot field experiments involving varying degrees of plant-derived inputs to the soil, viz. perennial (grassland), annual (arable), and no-plant control (bare fallow), associated with two contrasting soil textures (clayey and sandy). We hypothesized the presence of plants results in a greater range (diversity) of pore sizes and that perennial cropping systems invoke greater structural heterogeneity. Accordingly, the nature of the pore systems was visualised and quantified in 3D by X-ray Computed Tomography at the mm and µm scale. Plants did not affect the porosity of clay soil at the mm scale, but at the µm scale, annual and perennial plant cover resulted in significantly increased porosity, a wider range of pore sizes and greater connectivity compared to bare fallow soil. However, the opposite occurred in the sandy soil, where plants decreased the porosity and pore connectivity at the mm scale but had no significant structural effect at the µm scale. These data reveal profound effects of different agricultural management systems upon soil structural modification, which are strongly modulated by the extent of plant presence and also contingent on the inherent texture of the soil.

6.
PeerJ ; 6: e5006, 2018.
Article in English | MEDLINE | ID: mdl-29915705

ABSTRACT

Over the past three decades the colonial ascidian Didemnum vexillum has been expanding its global range, significantly impacting marine habitats and aquaculture facilities. What biological features make D. vexillum so highly invasive? Here, we show that juxtaposed allogeneic D. vexillum colony fragments ('ramets') may, initially, form chimeric entities. Subsequently, zooids of the differing genotypes within such chimeras coordinately retreat away from fusion zones. A few days following such post-fusion retreat movements there is further ramet fission and the formation of zooid-depauperate tunic zones. Using polymorphic microsatellite loci to distinguish between genotypes, we found that they were sectorial at the fusion zones and the subsequent ramet movements resulted in further spatial separation of the paired-genotypes indicating that the fusion events observed did not lead to formation of long-term, stable chimeras. Thus, movements of D. vexillum colony ramets from initial fusion zones lead to progressive segregation of genotypes probably minimizing potential somatic/germ-cell competition/parasitism. We speculate that relatively fast (≤10 mm/day) movement of D. vexillum colonies on substrates along with frequent, and perhaps unrestrained, transient allogeneic fusions play significant roles in this species' striking invasiveness and capacity to colonize new substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...