Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 14(5): 1959-1973, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37206126

ABSTRACT

Yokukansan (YKS) is a traditional Japanese herbal medicine that is increasingly being studied for its effects on neurodegenerative diseases. In our study, we presented a novel methodology for a multimodal analysis of the effects of YKS on nerve cells. The measurements of 3D refractive index distribution and its changes performed by holographic tomography were supported with an investigation by Raman micro-spectroscopy and fluorescence microscopy to gather complementary morphological and chemical information about cells and YKS influence. It was shown that at the concentrations tested, YKS inhibits proliferation, possibly involving reactive oxygen species. Also substantial changes in the cell RI after few hours of YKS exposure were detected, followed by longer-term changes in cell lipid composition and chromatin state.

2.
Appl Opt ; 61(5): B297-B306, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35201152

ABSTRACT

Low-level laser therapy (LLLT) is a therapeutic tool that uses the photobiochemical interaction between light and tissue. Its effectiveness is controversial due to a strong dependence on dosimetric parameters. In this work, we demonstrate that digital holographic microscopy is an effective label-free imaging technique to analyze the effects of LLLT on biological cells, and we propose the full methodology to create correct synthetic aperture phase maps for further extensive, highly accurate statistical analysis. The proposed methodology has been designed to provide a basis for many other biological experiments using quantitative phase imaging. We use SHSY-5Y and HaCaT cells irradiated with different doses of red light for the experiment. The analysis shows quantitative changes in cell dry mass density and the projected cell surface in response to different radiation doses.


Subject(s)
Holography , Low-Level Light Therapy , Holography/methods
3.
Biomed Opt Express ; 13(11): 5709-5720, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36733760

ABSTRACT

Tomographic quantitative phase imaging (QPI) lacks an absolute refractive index value baseline, which poses a problem when large dense objects extending over multiple fields of view are measured volume by volume and stitched together. Some of the measurements lack the natural baseline value that is provided by the mounting medium with a known refractive index. In this work, we discuss the problem of the refractive index (RI) baseline of individual reconstructed volumes that are deprived of access to mounting medium due to the extent of the object. The solution of this problem is provided by establishing the RI offsets based on the overlapping regions. We have proven that the process of finding the offset RI values may be justifiably reduced to the analogous procedure in the 2D baseline correction (2D-BC). Finally, we proposed the enhancement of the state-of-the-art 2D-BC procedure previously introduced in the context of 2D QPI. The processing is validated at the examples of a synthetic dataset and a liver organoid.

4.
Appl Opt ; 60(10): B65-B80, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33798138

ABSTRACT

Holographic tomography (HT) is an advanced label-free optical microscopic imaging method used for biological studies. HT uses digital holographic microscopy to record the complex amplitudes of a biological sample as digital holograms and then numerically reconstruct the sample's refractive index (RI) distribution in three dimensions. The RI values are a key parameter for label-free bio-examination, which correlate with metabolic activities and spatiotemporal distribution of biophysical parameters of cells and their internal organelles, tissues, and small-scale biological objects. This article provides insight on this rapidly growing HT field of research and its applications in biology. We present a review summary of the HT principle and highlight recent technical advancement in HT and its applications.


Subject(s)
Holography/instrumentation , Holography/methods , Microscopy/instrumentation , Microscopy/methods , Animals , Cell Line , Computer Simulation , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Lasers , Metabolome , Models, Chemical , Organelles/ultrastructure , Refractometry , Single-Cell Analysis , Software
5.
Cytometry A ; 99(4): 388-398, 2021 04.
Article in English | MEDLINE | ID: mdl-32959478

ABSTRACT

Three-dimensional quantitative phase imaging is an emerging method, which provides the 3D distribution of the refractive index (RI) and the dry mass in live and fixed cells as well as in tissues. However, an insufficiently answered question is the influence of chemical cell fixation procedures on the results of RI reconstructions. Therefore, this work is devoted to systematic investigations on the RI in cellular organelles of live and fixed cells including nucleus, nucleolus, nucleoplasm, and cytoplasm. The research was carried out on four different cell lines using a common paraformaldehyde (PFA)-based fixation protocol. The selected cell types represent the diversity of mammalian cells and therefore the results presented provide a picture of fixation caused RI changes in a broader context. A commercial Tomocube HT-1S device was used for 3D RI acquisition. The changes in the RI values after the fixation process are detected in the reconstructed phase distributions and amount to the order of 10-3 . The RI values decrease and the observed RI changes are found to be different between various cell lines; however, all of them show the most significant loss in the nucleolus. In conclusion, our study demonstrates the evident need for standardized preparation procedures in phase tomographic measurements. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Subject(s)
Microscopy , Refractometry , Formaldehyde , Polymers , Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...