Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32917049

ABSTRACT

Surface mechanical attrition treatment (SMAT) was used to generate a gradient microstructure in commercial grade magnesium. Positron annihilation lifetime spectroscopy and variable energy positron beam measurements, as well as microhardness tests, electron backscatter diffraction, X-ray diffraction, and electrochemical corrosion tests, were used to investigate the created subsurface microstructure and its properties. It was found that SMAT causes an increase in dislocation density and grain refinement which results in increased hardness of the subsurface zone. The mean positron lifetime values indicate trapping of positrons in vacancies associated with dislocations and dislocation jogs. The increase of the SMAT duration and the vibration amplitude influences the depth profile of the mean positron lifetime, which reflects the defect concentration profile. Electrochemical measurements revealed that the structure induced by SMAT increases the susceptibility of magnesium to anodic oxidation, leading to the enhanced formation of hydroxide coverage at the surface and, as a consequence, to the decrease in corrosion current. No significant effect of the treatment on the residual stress was found.

2.
J Appl Crystallogr ; 51(Pt 3): 732-745, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29896059

ABSTRACT

The main focus of the presented work was the investigation of structure and residual stress gradients in the near-surface region of materials studied by X-ray diffraction. The multireflection method was used to measure depth-dependent stress variation in near-surface layers of a Ti sample (grade 2) subjected to different mechanical treatments. First, the multireflection grazing incidence diffraction method was applied on a classical diffractometer with Cu Kα radiation. The applicability of the method was then extended by using a white synchrotron beam during an energy dispersive (ED) diffraction experiment. An advantage of this method was the possibility of using not only more than one reflection but also different wavelengths of radiation. This approach was successfully applied to analysis of data obtained in the ED experiment. There was good agreement between the measurements performed using synchrotron radiation and those with Cu Kα radiation on the classical diffractometer. A great advantage of high-energy synchrotron radiation was the possibility to measure stresses as well as the a0 parameter and c0/a0 ratio for much larger depths in comparison with laboratory X-rays.

SELECTION OF CITATIONS
SEARCH DETAIL
...