Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Sci Data ; 11(1): 363, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605048

ABSTRACT

Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to construct them automatically. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoint resources and abstraction algorithms), and benchmarks (e.g., prebuilt KGs). We evaluated the ecosystem by systematically comparing it to existing open-source KG construction methods and by analyzing its computational performance when used to construct 12 different large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.


Subject(s)
Biological Science Disciplines , Knowledge Bases , Pattern Recognition, Automated , Algorithms , Translational Research, Biomedical
2.
bioRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38106100

ABSTRACT

Knowledge graphs have found broad biomedical applications, providing useful representations of complex knowledge. Although plentiful evidence exists linking the gut microbiome to disease, mechanistic understanding of those relationships remains generally elusive. Here we demonstrate the potential of knowledge graphs to hypothesize plausible mechanistic accounts of host-microbe interactions in disease. To do so, we constructed a knowledge graph of linked microbes, genes and metabolites called MGMLink. Using a semantically constrained shortest path search through the graph and a novel path prioritization methodology based on cosine similarity, we show that this knowledge supports inference of mechanistic hypotheses that explain observed relationships between microbes and disease phenotypes. We discuss specific applications of this methodology in inflammatory bowel disease and Parkinson's disease. This approach enables mechanistic hypotheses surrounding the complex interactions between gut microbes and disease to be generated in a scalable and comprehensive manner.

3.
J Biomed Inform ; 143: 104405, 2023 07.
Article in English | MEDLINE | ID: mdl-37270143

ABSTRACT

BACKGROUND: Scientific discovery progresses by exploring new and uncharted territory. More specifically, it advances by a process of transforming unknown unknowns first into known unknowns, and then into knowns. Over the last few decades, researchers have developed many knowledge bases to capture and connect the knowns, which has enabled topic exploration and contextualization of experimental results. But recognizing the unknowns is also critical for finding the most pertinent questions and their answers. Prior work on known unknowns has sought to understand them, annotate them, and automate their identification. However, no knowledge-bases yet exist to capture these unknowns, and little work has focused on how scientists might use them to trace a given topic or experimental result in search of open questions and new avenues for exploration. We show here that a knowledge base of unknowns can be connected to ontologically grounded biomedical knowledge to accelerate research in the field of prenatal nutrition. RESULTS: We present the first ignorance-base, a knowledge-base created by combining classifiers to recognize ignorance statements (statements of missing or incomplete knowledge that imply a goal for knowledge) and biomedical concepts over the prenatal nutrition literature. This knowledge-base places biomedical concepts mentioned in the literature in context with the ignorance statements authors have made about them. Using our system, researchers interested in the topic of vitamin D and prenatal health were able to uncover three new avenues for exploration (immune system, respiratory system, and brain development) by searching for concepts enriched in ignorance statements. These were buried among the many standard enriched concepts. Additionally, we used the ignorance-base to enrich concepts connected to a gene list associated with vitamin D and spontaneous preterm birth and found an emerging topic of study (brain development) in an implied field (neuroscience). The researchers could look to the field of neuroscience for potential answers to the ignorance statements. CONCLUSION: Our goal is to help students, researchers, funders, and publishers better understand the state of our collective scientific ignorance (known unknowns) in order to help accelerate research through the continued illumination of and focus on the known unknowns and their respective goals for scientific knowledge.


Subject(s)
Knowledge Bases , Knowledge , Natural Language Processing , Female , Humans , Infant, Newborn , Premature Birth , Publications , Vitamin D
4.
Clin Transl Sci ; 15(8): 1848-1855, 2022 08.
Article in English | MEDLINE | ID: mdl-36125173

ABSTRACT

Within clinical, biomedical, and translational science, an increasing number of projects are adopting graphs for knowledge representation. Graph-based data models elucidate the interconnectedness among core biomedical concepts, enable data structures to be easily updated, and support intuitive queries, visualizations, and inference algorithms. However, knowledge discovery across these "knowledge graphs" (KGs) has remained difficult. Data set heterogeneity and complexity; the proliferation of ad hoc data formats; poor compliance with guidelines on findability, accessibility, interoperability, and reusability; and, in particular, the lack of a universally accepted, open-access model for standardization across biomedical KGs has left the task of reconciling data sources to downstream consumers. Biolink Model is an open-source data model that can be used to formalize the relationships between data structures in translational science. It incorporates object-oriented classification and graph-oriented features. The core of the model is a set of hierarchical, interconnected classes (or categories) and relationships between them (or predicates) representing biomedical entities such as gene, disease, chemical, anatomic structure, and phenotype. The model provides class and edge attributes and associations that guide how entities should relate to one another. Here, we highlight the need for a standardized data model for KGs, describe Biolink Model, and compare it with other models. We demonstrate the utility of Biolink Model in various initiatives, including the Biomedical Data Translator Consortium and the Monarch Initiative, and show how it has supported easier integration and interoperability of biomedical KGs, bringing together knowledge from multiple sources and helping to realize the goals of translational science.


Subject(s)
Pattern Recognition, Automated , Translational Science, Biomedical , Knowledge
5.
BMC Bioinformatics ; 22(Suppl 1): 598, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34920707

ABSTRACT

BACKGROUND: Automated assignment of specific ontology concepts to mentions in text is a critical task in biomedical natural language processing, and the subject of many open shared tasks. Although the current state of the art involves the use of neural network language models as a post-processing step, the very large number of ontology classes to be recognized and the limited amount of gold-standard training data has impeded the creation of end-to-end systems based entirely on machine learning. Recently, Hailu et al. recast the concept recognition problem as a type of machine translation and demonstrated that sequence-to-sequence machine learning models have the potential to outperform multi-class classification approaches. METHODS: We systematically characterize the factors that contribute to the accuracy and efficiency of several approaches to sequence-to-sequence machine learning through extensive studies of alternative methods and hyperparameter selections. We not only identify the best-performing systems and parameters across a wide variety of ontologies but also provide insights into the widely varying resource requirements and hyperparameter robustness of alternative approaches. Analysis of the strengths and weaknesses of such systems suggest promising avenues for future improvements as well as design choices that can increase computational efficiency with small costs in performance. RESULTS: Bidirectional encoder representations from transformers for biomedical text mining (BioBERT) for span detection along with the open-source toolkit for neural machine translation (OpenNMT) for concept normalization achieve state-of-the-art performance for most ontologies annotated in the CRAFT Corpus. This approach uses substantially fewer computational resources, including hardware, memory, and time than several alternative approaches. CONCLUSIONS: Machine translation is a promising avenue for fully machine-learning-based concept recognition that achieves state-of-the-art results on the CRAFT Corpus, evaluated via a direct comparison to previous results from the 2019 CRAFT shared task. Experiments illuminating the reasons for the surprisingly good performance of sequence-to-sequence methods targeting ontology identifiers suggest that further progress may be possible by mapping to alternative target concept representations. All code and models can be found at: https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation .

6.
Pac Symp Biocomput ; 23: 133-144, 2018.
Article in English | MEDLINE | ID: mdl-29218876

ABSTRACT

Our knowledge of the biological mechanisms underlying complex human disease is largely incomplete. While Semantic Web technologies, such as the Web Ontology Language (OWL), provide powerful techniques for representing existing knowledge, well-established OWL reasoners are unable to account for missing or uncertain knowledge. The application of inductive inference methods, like machine learning and network inference are vital for extending our current knowledge. Therefore, robust methods which facilitate inductive inference on rich OWL-encoded knowledge are needed. Here, we propose OWL-NETS (NEtwork Transformation for Statistical learning), a novel computational method that reversibly abstracts OWL-encoded biomedical knowledge into a network representation tailored for network inference. Using several examples built with the Open Biomedical Ontologies, we show that OWL-NETS can leverage existing ontology-based knowledge representations and network inference methods to generate novel, biologically-relevant hypotheses. Further, the lossless transformation of OWL-NETS allows for seamless integration of inferred edges back into the original knowledge base, extending its coverage and completeness.


Subject(s)
Biological Ontologies/statistics & numerical data , Algorithms , Computational Biology/methods , Humans , Internet , Knowledge Bases , Language , Machine Learning , Models, Biological , Semantics
7.
BMC Bioinformatics ; 18(1): 372, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818042

ABSTRACT

BACKGROUND: Coreference resolution is the task of finding strings in text that have the same referent as other strings. Failures of coreference resolution are a common cause of false negatives in information extraction from the scientific literature. In order to better understand the nature of the phenomenon of coreference in biomedical publications and to increase performance on the task, we annotated the Colorado Richly Annotated Full Text (CRAFT) corpus with coreference relations. RESULTS: The corpus was manually annotated with coreference relations, including identity and appositives for all coreferring base noun phrases. The OntoNotes annotation guidelines, with minor adaptations, were used. Interannotator agreement ranges from 0.480 (entity-based CEAF) to 0.858 (Class-B3), depending on the metric that is used to assess it. The resulting corpus adds nearly 30,000 annotations to the previous release of the CRAFT corpus. Differences from related projects include a much broader definition of markables, connection to extensive annotation of several domain-relevant semantic classes, and connection to complete syntactic annotation. Tool performance was benchmarked on the data. A publicly available out-of-the-box, general-domain coreference resolution system achieved an F-measure of 0.14 (B3), while a simple domain-adapted rule-based system achieved an F-measure of 0.42. An ensemble of the two reached F of 0.46. Following the IDENTITY chains in the data would add 106,263 additional named entities in the full 97-paper corpus, for an increase of 76% percent in the semantic classes of the eight ontologies that have been annotated in earlier versions of the CRAFT corpus. CONCLUSIONS: The project produced a large data set for further investigation of coreference and coreference resolution in the scientific literature. The work raised issues in the phenomenon of reference in this domain and genre, and the paper proposes that many mentions that would be considered generic in the general domain are not generic in the biomedical domain due to their referents to specific classes in domain-specific ontologies. The comparison of the performance of a publicly available and well-understood coreference resolution system with a domain-adapted system produced results that are consistent with the notion that the requirements for successful coreference resolution in this genre are quite different from those of the general domain, and also suggest that the baseline performance difference is quite large.


Subject(s)
Data Mining/methods , Periodicals as Topic , Semantics
8.
Database (Oxford) ; 20172017 Jan 01.
Article in English | MEDLINE | ID: mdl-31725864

ABSTRACT

Gold-standard annotated corpora have become important resources for the training and testing of natural-language-processing (NLP) systems designed to support biocuration efforts, and ontologies are increasingly used to facilitate curational consistency and semantic integration across disparate resources. Bringing together the respective power of these, the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of full-length, open-access biomedical journal articles with extensive manually created syntactic, formatting and semantic markup, was previously created and released. This initial public release has already been used in multiple projects to drive development of systems focused on a variety of biocuration, search, visualization, and semantic and syntactic NLP tasks. Building on its demonstrated utility, we have expanded the CRAFT Corpus with a large set of manually created semantic annotations relying on Uberon, an ontology representing anatomical entities and life-cycle stages of multicellular organisms across species as well as types of multicellular organisms defined in terms of life-cycle stage and sexual characteristics. This newly created set of annotations, which has been added for v2.1 of the corpus, is by far the largest publicly available collection of gold-standard anatomical markup and is the first large-scale effort at manual markup of biomedical text relying on the entirety of an anatomical terminology, as opposed to annotation with a small number of high-level anatomical categories, as performed in previous corpora. In addition to presenting and discussing this newly available resource, we apply it to provide a performance baseline for the automatic annotation of anatomical concepts in biomedical text using a prominent concept recognition system. The full corpus, released with a CC BY 3.0 license, may be downloaded from http://bionlp-corpora.sourceforge.net/CRAFT/index.shtml. Database URL: http://bionlp-corpora.sourceforge.net/CRAFT/index.shtml.

9.
Stud Health Technol Inform ; 245: 644-648, 2017.
Article in English | MEDLINE | ID: mdl-29295175

ABSTRACT

Semantic relations have been studied for decades without yet reaching consensus on the set of these relations. However, biomedical language processing and ontologies rely on these relations, so it is important to be able to evaluate their suitability. In this paper we examine the role of inter-annotator agreement in choosing between competing proposals regarding the set of such relations. The experiments consisted of labeling the semantic relations between two elements of noun-noun compounds (e.g. cell migration). Two judges annotated a dataset of terms from the biomedical domain using two competing sets of relations and analyzed the inter-annotator agreement. With no training and little documentation, agreement on this task was fairly high and disagreements were consistent. The results support the utility of the relation-based approach to semantic representation.


Subject(s)
Documentation , Natural Language Processing , Semantics , Health Occupations
10.
BMC Bioinformatics ; 16: 126, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25903923

ABSTRACT

BACKGROUND: The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. RESULTS: We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. CONCLUSIONS: KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for formal reasoning over a wealth of integrated biomedical data.


Subject(s)
Biomedical Research , Computational Biology/methods , Databases, Factual , Information Storage and Retrieval/methods , Semantics , Biological Ontologies , Data Collection , Humans , Internet , Knowledge Bases , PubMed
11.
Methods Mol Biol ; 1159: 33-45, 2014.
Article in English | MEDLINE | ID: mdl-24788260

ABSTRACT

Concept mapping is a fundamental task in biomedical text mining in which textual mentions of concepts of interest are annotated with specific entries of lexicons, terminologies, ontologies, or databases representing these concepts. Though there has been a significant amount of research, there are still a limited number of practical, publicly available tools for concept mapping of biomedical text specified by the user as an independent task. In this chapter, several tools that can automatically map biomedical text to concepts from a wide range of terminological resources are presented, followed by those that can map to more restricted sets of these resources. This presentation is intended to serve as a guide to researchers without a background in biomedical concept mapping of text for the selection of an appropriate tool based on usability, scalability, configurability, balance between precision and recall, and the desired set of terminological resources with which to annotate the text. Only with effective automatic concept-mapping tools will systems be able to scalably analyze the biomedical literature and other large sets of documents as a fundamental part of more complex text-mining tasks such as information extraction and hypothesis evaluation and generation.


Subject(s)
Biological Ontologies , Concept Formation , Data Mining/methods , Terminology as Topic
12.
BMC Bioinformatics ; 15: 59, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24571547

ABSTRACT

BACKGROUND: Ontological concepts are useful for many different biomedical tasks. Concepts are difficult to recognize in text due to a disconnect between what is captured in an ontology and how the concepts are expressed in text. There are many recognizers for specific ontologies, but a general approach for concept recognition is an open problem. RESULTS: Three dictionary-based systems (MetaMap, NCBO Annotator, and ConceptMapper) are evaluated on eight biomedical ontologies in the Colorado Richly Annotated Full-Text (CRAFT) Corpus. Over 1,000 parameter combinations are examined, and best-performing parameters for each system-ontology pair are presented. CONCLUSIONS: Baselines for concept recognition by three systems on eight biomedical ontologies are established (F-measures range from 0.14-0.83). Out of the three systems we tested, ConceptMapper is generally the best-performing system; it produces the highest F-measure of seven out of eight ontologies. Default parameters are not ideal for most systems on most ontologies; by changing parameters F-measure can be increased by up to 0.4. Not only are best performing parameters presented, but suggestions for choosing the best parameters based on ontology characteristics are presented.


Subject(s)
Biological Ontologies , Data Mining/methods , Databases, Factual , Reproducibility of Results
13.
J Biomed Semantics ; 4: 38, 2013.
Article in English | MEDLINE | ID: mdl-24268021

ABSTRACT

BACKGROUND: Though the annotation of digital artifacts with metadata has a long history, the bulk of that work focuses on the association of single terms or concepts to single targets. As annotation efforts expand to capture more complex information, annotations will need to be able to refer to knowledge structures formally defined in terms of more atomic knowledge structures. Existing provenance efforts in the Semantic Web domain primarily focus on tracking provenance at the level of whole triples and do not provide enough detail to track how individual triple elements of annotations were derived from triple elements of other annotations. RESULTS: We present a task- and domain-independent ontological model for capturing annotations and their linkage to their denoted knowledge representations, which can be singular concepts or more complex sets of assertions. We have implemented this model as an extension of the Information Artifact Ontology in OWL and made it freely available, and we show how it can be integrated with several prominent annotation and provenance models. We present several application areas for the model, ranging from linguistic annotation of text to the annotation of disease-associations in genome sequences. CONCLUSIONS: With this model, progressively more complex annotations can be composed from other annotations, and the provenance of compositional annotations can be represented at the annotation level or at the level of individual elements of the RDF triples composing the annotations. This in turn allows for progressively richer annotations to be constructed from previous annotation efforts, the precise provenance recording of which facilitates evidence-based inference and error tracking.

14.
BMC Bioinformatics ; 13: 207, 2012 Aug 17.
Article in English | MEDLINE | ID: mdl-22901054

ABSTRACT

BACKGROUND: We introduce the linguistic annotation of a corpus of 97 full-text biomedical publications, known as the Colorado Richly Annotated Full Text (CRAFT) corpus. We further assess the performance of existing tools for performing sentence splitting, tokenization, syntactic parsing, and named entity recognition on this corpus. RESULTS: Many biomedical natural language processing systems demonstrated large differences between their previously published results and their performance on the CRAFT corpus when tested with the publicly available models or rule sets. Trainable systems differed widely with respect to their ability to build high-performing models based on this data. CONCLUSIONS: The finding that some systems were able to train high-performing models based on this corpus is additional evidence, beyond high inter-annotator agreement, that the quality of the CRAFT corpus is high. The overall poor performance of various systems indicates that considerable work needs to be done to enable natural language processing systems to work well when the input is full-text journal articles. The CRAFT corpus provides a valuable resource to the biomedical natural language processing community for evaluation and training of new models for biomedical full text publications.


Subject(s)
Data Mining/methods , Natural Language Processing , Software
15.
BMC Bioinformatics ; 13: 161, 2012 Jul 09.
Article in English | MEDLINE | ID: mdl-22776079

ABSTRACT

BACKGROUND: Manually annotated corpora are critical for the training and evaluation of automated methods to identify concepts in biomedical text. RESULTS: This paper presents the concept annotations of the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-length, open-access biomedical journal articles that have been annotated both semantically and syntactically to serve as a research resource for the biomedical natural-language-processing (NLP) community. CRAFT identifies all mentions of nearly all concepts from nine prominent biomedical ontologies and terminologies: the Cell Type Ontology, the Chemical Entities of Biological Interest ontology, the NCBI Taxonomy, the Protein Ontology, the Sequence Ontology, the entries of the Entrez Gene database, and the three subontologies of the Gene Ontology. The first public release includes the annotations for 67 of the 97 articles, reserving two sets of 15 articles for future text-mining competitions (after which these too will be released). Concept annotations were created based on a single set of guidelines, which has enabled us to achieve consistently high interannotator agreement. CONCLUSIONS: As the initial 67-article release contains more than 560,000 tokens (and the full set more than 790,000 tokens), our corpus is among the largest gold-standard annotated biomedical corpora. Unlike most others, the journal articles that comprise the corpus are drawn from diverse biomedical disciplines and are marked up in their entirety. Additionally, with a concept-annotation count of nearly 100,000 in the 67-article subset (and more than 140,000 in the full collection), the scale of conceptual markup is also among the largest of comparable corpora. The concept annotations of the CRAFT Corpus have the potential to significantly advance biomedical text mining by providing a high-quality gold standard for NLP systems. The corpus, annotation guidelines, and other associated resources are freely available at http://bionlp-corpora.sourceforge.net/CRAFT/index.shtml.


Subject(s)
Data Mining , Natural Language Processing , Vocabulary, Controlled , Computational Biology/methods , Databases, Factual , Information Storage and Retrieval/methods , Semantics
16.
J Biomed Inform ; 44(1): 94-101, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20971216

ABSTRACT

A wealth of knowledge valuable to the translational research scientist is contained within the vast biomedical literature, but this knowledge is typically in the form of natural language. Sophisticated natural-language-processing systems are needed to translate text into unambiguous formal representations grounded in high-quality consensus ontologies, and these systems in turn rely on gold-standard corpora of annotated documents for training and testing. To this end, we are constructing the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-text biomedical journal articles that are being manually annotated with the entire sets of terms from select vocabularies, predominantly from the Open Biomedical Ontologies (OBO) library. Our efforts in building this corpus has illuminated infelicities of these ontologies with respect to the semantic annotation of biomedical documents, and we propose desiderata whose implementation could substantially improve their utility in this task; these include the integration of overlapping terms across OBOs, the resolution of OBO-specific ambiguities, the integration of the BFO with the OBOs and the use of mid-level ontologies, the inclusion of noncanonical instances, and the expansion of relations and realizable entities.


Subject(s)
Biomedical Research , Databases, Factual , Documentation , Medical Informatics , Semantics , Animals , Humans , Natural Language Processing
17.
J Biomed Inform ; 44(1): 80-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20152934

ABSTRACT

The Gene Ontology (GO) consists of nearly 30,000 classes for describing the activities and locations of gene products. Manual maintenance of ontology of this size is a considerable effort, and errors and inconsistencies inevitably arise. Reasoners can be used to assist with ontology development, automatically placing classes in a subsumption hierarchy based on their properties. However, the historic lack of computable definitions within the GO has prevented the user of these tools. In this paper, we present preliminary results of an ongoing effort to normalize the GO by explicitly stating the definitions of compositional classes in a form that can be used by reasoners. These definitions are partitioned into mutually exclusive cross-product sets, many of which reference other OBO Foundry candidate ontologies for chemical entities, proteins, biological qualities and anatomical entities. Using these logical definitions we are gradually beginning to automate many aspects of ontology development, detecting errors and filling in missing relationships. These definitions also enhance the GO by weaving it into the fabric of a wider collection of interoperating ontologies, increasing opportunities for data integration and enhancing genomic analyses.


Subject(s)
Database Management Systems , Databases, Genetic , Genetics , Vocabulary, Controlled , Anatomy , Animals , Cell Biology , Genes , Humans , Molecular Biology
18.
Bioinformatics ; 24(12): 1448-55, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18463117

ABSTRACT

MOTIVATION: Existing projects that focus on the semiautomatic addition of links between existing terms in the Open Biomedical Ontologies can take advantage of reasoners that can make new inferences between terms that are based on the added formal definitions and that reflect nonalignments between the linked terms. However, these projects require that these definitions be necessary and sufficient, a strong requirement that often does not hold. If such definitions cannot be added, the reasoners cannot point to the nonalignments through the suggestion of new inferences. RESULTS: We describe a methodology by which we have identified over 1900 instances of nonredundant nonalignments between terms from the Gene Ontology (GO) biological process (BP), cellular component (CC) and molecular function (MF) ontologies, Chemical Entities of Biological Interest (ChEBI) and the Cell Type Ontology (CL). Many of the 39.8% of these nonalignments whose object terms are more atomic than the subject terms are not currently examined in other ontology-enrichment projects due to the fact that the necessary and sufficient conditions required for the inferences are not currently examined. Analysis of the ratios of nonalignments to assertions from which the nonalignments were identified suggests that BP-MF, BP-BP, BP-CL and CC-CC terms are relatively well-aligned, while ChEBI-MF, BP-ChEBI and CC-MF terms are relatively not aligned well. We propose four ways to resolve an identified nonalignment and recommend an analogous implementation of our methodology in ontology-enrichment tools to identify types of nonalignments that are currently not detected. AVAILABILITY: The nonalignments discussed in this article may be viewed at http://compbio.uchsc.edu/Hunter_lab/Bada/nonalignments_2008_03_06.html. Code for the generation of these nonalignments is available upon request. CONTACT: mike.bada@uchsc.edu.


Subject(s)
Algorithms , Artificial Intelligence , Database Management Systems , Databases, Genetic , Information Storage and Retrieval/methods , Natural Language Processing , Vocabulary, Controlled , Systems Integration
19.
J Biomed Inform ; 40(3): 300-15, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17011833

ABSTRACT

This paper describes a frame-based integration of the three GO subontologies, the Chemical Entities of Biological Interest ontology, and the Cell Type Ontology in which relationships are modeled in a way that better captures the semantics between biological concepts represented by the terms, rather than between the terms themselves, than previous frame-based efforts. We also describe a methodology for creating suggested enriching assertions by identifying patterns in GO terms, mapping these patterns to new, specific relationships, and matching term substrings to concepts. Using this methodology, a predicted assertion was made for 62% of GO terms that matched one of 31 patterns, and 97% of these predicted assertions were assessed to be valid, resulting in an initial set of over 4000 assertions. Furthermore, this methodology programmatically integrates assertions into an ontology such that each assertion is fully consistent with respect to higher (i.e., more general) relevant class and slot levels.


Subject(s)
Computational Biology/methods , Models, Genetic , Vocabulary, Controlled , Database Management Systems , Humans , Information Science , Information Storage and Retrieval , Models, Biological , Models, Statistical , Models, Theoretical , Natural Language Processing , Programming Languages , Software , Unified Medical Language System
20.
Pac Symp Biocomput ; : 28-39, 2006.
Article in English | MEDLINE | ID: mdl-17094225

ABSTRACT

We used exact term matching, stemming, and inclusion of synonyms, implemented via the Lucene information retrieval library, to discover relationships between the Gene Ontology and three other OBO ontologies: ChEBI, Cell Type, and BRENDA Tissue. Proposed relationships were evaluated by domain experts. We discovered 91,385 relationships between the ontologies. Various methods had a wide range of correctness. Based on these results, we recommend careful evaluation of all matching strategies before use, including exact string matching. The full set of relationships is available at compbio.uchsc.edu/dependencies.


Subject(s)
Computer Simulation , Computational Biology , Databases, Factual , Linguistics , Models, Biological , Natural Language Processing
SELECTION OF CITATIONS
SEARCH DETAIL
...