Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 134(32): 13196-9, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22871052

ABSTRACT

In order to truly unlock advanced applications of single-walled carbon nanotubes (SWNTs), one needs to separate them according to both chirality and handedness. Here we show that the chiral D-ribityl phosphate chain of flavin mononucleotide (FMN) induces a right-handed helix that enriches the left-handed SWNTs for all suspended (n,m) species. Such enantioselectivity stems from the sp(3) hybridization of the N atom anchoring the sugar moiety to the flavin ring. This produces two FMN conformations (syn and anti) analogous to DNA. Electrostatic interactions between the neighboring uracil moiety and the 2'-OH group of the side chain provide greater stability to the anti-FMN conformation that leads to a right-handed FMN helix. The right-handed twist that the FMN helix imposes to the underlying nanotube, similar to "Indian burn", causes diameter dilation of only the left-handed SWNTs, whose improved intermolecular interactions with the overlaying FMN helix, impart enantioselection.


Subject(s)
Flavin Mononucleotide/chemistry , Models, Biological , Nanotubes, Carbon/chemistry , Circular Dichroism , Hydrogen Bonding , Protein Structure, Secondary , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...