Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38531016

ABSTRACT

Epithelial polarity is fundamental in maintaining barrier integrity and tissue protection. In cystic fibrosis (CF), apicobasal polarity of the airway epithelium is altered, resulting in increased apical fibronectin deposition and enhanced susceptibility to bacterial infections. Here, we evaluated the effect of highly effective modulator treatment (HEMT) on fibronectin apical deposition and investigated the intracellular mechanisms triggering the defect in polarity of the CF airway epithelium. To this end, primary cultures of CF (F508del variant) human airway epithelial cells (HAECs) and a HAEC line, Calu-3, knocked-down (KD) for CFTR (CFTR KD) were compared to control counterparts, grown at an air-liquid interface (ALI). We show that CFTR mutation in primary HAECs and CFTR KD cells promote the overexpression and over-secretion of TGF-ß1 and DKK1 when cultured at ALI. These dynamic changes result in hyperactivation of the TGF-ß pathway and inhibition of the Wnt pathway through degradation of ß-catenin leading to imbalanced proliferation and polarization. The abnormal interplay between TGF-ß and Wnt signaling pathways is reinforced by aberrant Akt signaling. Pharmacological manipulation of TGF-ß, Wnt, and Akt pathways restored polarization of the F508del CF epithelium, a correction that was not achieved by HEMT. Our data shed new insights into the signaling pathways that fine-tune apicobasal polarization in primary airway epithelial cells and may provide an explanation to the mitigated efficacy of HEMT on lung infection in people with CF.

2.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38336456

ABSTRACT

Defective hydration of airway surface mucosa is associated with lung infection in cystic fibrosis (CF), partly caused by disruption of the epithelial barrier integrity. Although rehydration of the CF airway surface liquid (ASL) alleviates epithelium vulnerability to infection by junctional protein expression, the mechanisms linking ASL to barrier integrity are unknown. We show here the strong degradation of YAP1 and TAZ proteins in well-polarized CF human airway epithelial cells (HAECs), a process that was prevented by ASL rehydration. Conditional silencing of YAP1 in rehydrated CF HAECs indicated that YAP1 expression was necessary for the maintenance of junctional complexes. A higher plasma membrane tension in CF HAECs reduced endocytosis, concurrent with the maintenance of active ß1-integrin ectopically located at the apical membrane. Pharmacological inhibition of ß1-integrin accumulation restored YAP1 expression in CF HAECs. These results indicate that dehydration of the CF ASL affects epithelial plasma membrane tension, resulting in ectopic activation of a ß1-integrin/YAP1 signaling pathway associated with degradation of junctional proteins.


Subject(s)
Cystic Fibrosis , Epithelium , Signal Transduction , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Dehydration/metabolism , Epithelium/metabolism , Epithelium/pathology , Integrin beta1/metabolism , Respiratory Mucosa/metabolism
3.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38003349

ABSTRACT

Connexins and pannexins are transmembrane proteins that can form direct (gap junctions) or indirect (connexons, pannexons) intercellular communication channels. By propagating ions, metabolites, sugars, nucleotides, miRNAs, and/or second messengers, they participate in a variety of physiological functions, such as tissue homeostasis and host defense. There is solid evidence supporting a role for intercellular signaling in various pulmonary inflammatory diseases where alteration of connexin/pannexin channel functional expression occurs, thus leading to abnormal intercellular communication pathways and contributing to pathophysiological aspects, such as innate immune defense and remodeling. The integrity of the airway epithelium, which is the first line of defense against invading microbes, is established and maintained by a repair mechanism that involves processes such as proliferation, migration, and differentiation. Here, we briefly summarize current knowledge on the contribution of connexins and pannexins to necessary processes of tissue repair and speculate on their possible involvement in the shaping of the airway epithelium integrity.


Subject(s)
Connexins , Lung Diseases , Humans , Connexins/metabolism , Gap Junctions/metabolism , Cell Communication/physiology , Ion Channels/metabolism , Lung Diseases/metabolism , Epithelial Cells/metabolism
4.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: mdl-36602863

ABSTRACT

Cystic fibrosis (CF) is characterized by chronic bacterial infections leading to progressive bronchiectasis and respiratory failure. Pseudomonas aeruginosa (Pa) is the predominant opportunistic pathogen infecting the CF airways. The guanine nucleotide exchange factor Vav3 plays a critical role in Pa adhesion to the CF airways by inducing luminal fibronectin deposition that favors bacteria trapping. Here we report that Vav3 overexpression in CF is caused by upregulation of the mRNA-stabilizing protein HuR. We found that HuR accumulates in the cytoplasm of CF airway epithelial cells and that it binds to and stabilizes Vav3 mRNA. Interestingly, disruption of the HuR-Vav3 mRNA interaction improved the CF epithelial integrity, inhibited the formation of the fibronectin-made bacterial docking platforms, and prevented Pa adhesion to the CF airway epithelium. These findings indicate that targeting HuR represents a promising antiadhesive approach in CF that can prevent initial stages of Pa infection in a context of emergence of multidrug-resistant pathogens.


Subject(s)
Cystic Fibrosis , Proto-Oncogene Proteins c-vav , Pseudomonas aeruginosa , Respiratory System , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Epithelium/metabolism , Fibronectins/metabolism , Proto-Oncogene Proteins c-vav/genetics , Proto-Oncogene Proteins c-vav/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/immunology , Respiratory System/metabolism
5.
Cells ; 11(9)2022 05 09.
Article in English | MEDLINE | ID: mdl-35563895

ABSTRACT

Defective hydration of airway surface mucosa is associated with recurrent lung infection in cystic fibrosis (CF), a disease caused by CF transmembrane conductance regulator (CFTR) gene mutations. Whether the composition and/or presence of an airway surface liquid (ASL) is sufficient to prevent infection remains unclear. The susceptibility to infection of polarized wild type and CFTR knockdown (CFTR-KD) airway epithelial cells was determined in the presence or absence of a healthy ASL or physiological saline. CFTR-KD epithelia exhibited strong ASL volume reduction, enhanced susceptibility to infection, and reduced junctional integrity. Interestingly, the presence of an apical physiological saline alleviated disruption of the airway epithelial barrier by stimulating essential junctional protein expression. Thus, rehydrated CFTR-KD cells were protected from infection despite normally intense bacterial growth. This study indicates that an epithelial integrity gatekeeper is modulated by the presence of an apical liquid volume, irrespective of the liquid's composition and of expression of a functional CFTR.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , Ion Transport , Respiratory Mucosa/metabolism
6.
Am J Cancer Res ; 11(1): 251-263, 2021.
Article in English | MEDLINE | ID: mdl-33520372

ABSTRACT

It's now clearly established that the tumor microenvironment participates to tumor development. Among the different actors contributing to these processes, ion channels, located at the cancer cell surface, play a major role. We recently demonstrated that the association of Kv10.1, Orai1 and SPCA2 is crucial to promote the collagen-induced survival of MCF-7 breast cancer cells. By using siRNA directed against SPCA2, we shown that this protein is involved in the regulation of the activity, the expression and the sub-cellular localization of Kv10.1. In addition, it has been demonstrated that SPCA2 is involved in SICE in MCF-7 cells and that the N- and the C-terminal parts of this protein are necessary to interact and to produce Ca2+ entry. However, no information is available about the necessary SPCA2's important region to regulate Kv10.1. The aim of our work is to evaluate how SPCA2 could interact with Kv10.1 channel to induce survival promotion. By using different SPCA2 mutants, we evaluate the role of the N- and C-terminal sections on the expression and the activity of Kv10.1 channels. In addition, we analyzed the impact of these deletions on the collagen 1-induced cell survival. Our results bring out new information about the regulation of Kv10.1 channel through SPCA2. More specifically how the N- and C-terminus of this Ca2+ transporter regulate Kv10.1 expression, trafficking, and function suggesting new opportunities to target Kv10.1 channels in cancer progression.

7.
Cell Rep ; 32(1): 107842, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32640241

ABSTRACT

Pseudomonas aeruginosa (Pa) represents the leading cause of airway infection in cystic fibrosis (CF). Early airways colonization can be explained by enhanced adhesion of Pa to the respiratory epithelium. RNA sequencing (RNA-seq) on fully differentiated primary cultures of airway epithelial cells from CF and non-CF donors predict that VAV3, ß1 INTEGRIN, and FIBRONECTIN genes are significantly enriched in CF. Indeed, Vav3 is apically overexpressed in CF, associates with active ß1 integrin luminally exposed, and increases fibronectin deposition. These luminal microdomains, rich in fibronectin and ß1 integrin and regulated by Vav3, mediate the increased Pa adhesion to the CF epithelium. Interestingly, Vav3 inhibition normalizes the CF-dependent fibronectin and ß1-integrin ectopic expression, improves the CF epithelial integrity, and prevents the enhanced Pa trapping to the CF epithelium. Through its capacity to promote a luminal complex with active ß1 integrin and fibronectin that favors bacteria trapping, Vav3 may represent a new target in CF.


Subject(s)
Bacterial Adhesion , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Proto-Oncogene Proteins c-vav/metabolism , Pseudomonas aeruginosa/physiology , Respiratory Mucosa/microbiology , Respiratory Mucosa/pathology , Actin Cytoskeleton/metabolism , Cell Adhesion/genetics , Cell Polarity/genetics , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/pathology , Fibronectins/genetics , Fibronectins/metabolism , Gene Expression Regulation , Gene Silencing , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Male , Mutation/genetics , Proto-Oncogene Proteins c-vav/genetics , cdc42 GTP-Binding Protein/metabolism
8.
Sci Rep ; 9(1): 16556, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719610

ABSTRACT

Neutrophils are the first immune cells to kill invading microbes at sites of infection using a variety of processes, including the release of proteases, phagocytosis and the production of neutrophil extracellular traps (NETs). NET formation, or NETosis, is a specific and highly efficient process, which is induced by a variety of stimuli leading to expulsion of DNA, proteases and antimicrobial peptides to the extracellular space. However, uncontrolled NETosis may lead to adverse effects and exert tissue damage in pathological conditions. Here, we show that the ATP channel pannexin1 (Panx1) is functionally expressed by bone marrow-derived neutrophils (BMDNs) of wild-type (WT) mice and that ATP contributes to NETosis induced in vitro by the calcium ionophore A23187 or phorbol 12-myristate 13-acetate (PMA). Interestingly, neutrophils isolated from Panx1-/- mice showed reduced and/or delayed induction of NETosis. Brilliant blue FCF dye (BB-FCF), a Panx1 channel inhibitor, decreased NETosis in wild-type neutrophils to the extent observed in Panx1-/- neutrophils. Thus, we demonstrate that ATP and Panx1 channels contribute to NETosis and may represent a therapeutic target.


Subject(s)
Adenosine Triphosphate/pharmacology , Extracellular Traps/metabolism , NADP/metabolism , Animals , Bone Marrow Cells/cytology , Calcimycin/pharmacology , Connexins/antagonists & inhibitors , Connexins/deficiency , Connexins/metabolism , Extracellular Traps/drug effects , Kinetics , Mice , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Tetradecanoylphorbol Acetate/pharmacology
9.
Sci Rep ; 9(1): 1175, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718673

ABSTRACT

In the last years it has been shown that many components of tumor microenvironment (TM) can induce cell signaling that permit to breast cancer cells (BC) to maintain their aggressiveness. Ion channels have a role in mediating TM signal; recently we have demonstrated a functional collaboration between Kv10.1 and Orai1 channels in mediating the pro-survival effect of collagen 1 on BC cells. Here we show how SPCA2 (Secretory Pathway Ca2+ ATPase) has a role in this process and is able to support survival and proliferation induced by collagen 1. By participating to an auto-sustaining loop, SPCA2 enhances membrane expression of Kv10.1 and Orai1; the activity of every component of this trio is necessary to mediate a store independent calcium entry (SICE). This SICE is fundamental to maintain both the activation of the pro-survival pathway and the membrane localization and consequently the activity of the two channels. Moreover, the three proteins and the collagen receptor DDR1 are overexpressed only in aggressive tumors tissues. In this work, we propose a novel association between SPCA2, Kv10.1 and Orai1 involved in mediating transduction signals from TM to the BC cells that can be potentially exploited in the search of novel therapeutic targets specific to tumor tissues.


Subject(s)
Breast Neoplasms/physiopathology , Calcium-Transporting ATPases/metabolism , Cell Survival , Ether-A-Go-Go Potassium Channels/metabolism , ORAI1 Protein/metabolism , Biological Transport , Calcium/metabolism , Cell Proliferation , Female , Humans , MCF-7 Cells , Models, Biological , Signal Transduction , Tumor Microenvironment
10.
Oncotarget ; 9(37): 24653-24671, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29872495

ABSTRACT

Collagen type 1 is among the tumor microenvironment (TM) factors, that regulates proliferation, survival, migration and invasion. Ion channels are key players in interactions between tumor cells and TM. Kv10.1 has been shown to play an essential role in breast cancer cell proliferation and migration by permitting Ca2+ influx notably via Orai1. Here, we show that human breast cancer (BC) cells growing, in culture media completely devoid of the serum and seeded on collagen 1 coating, exhibited less apoptotic rate and a decrease in Bax expression when compared to those grown on plastic. The survival conferred by collagen 1 was completely abolished by removing extracellular Ca2+ from the culture medium. In addition, Ca2+ entry was increased in collagen 1 condition along with increased Kv10.1 and Orai1 expressions. Moreover, collagen 1 was able to increase co-localization of Kv10.1 and Orai1 on the plasma membrane. Interestingly, silencing of Kv10.1 and Orai1 reduced survival and Ca2+influx without any additive effect. This calcium-dependent survival is accompanied by the activation of ERK1/2, and its pharmacological inhibition completely abolished the increase in Kv10.1 and Orai1 expressions, activities, and the cell survival induced by collagen 1. Moreover, both Kv10.1 and Orai1 knockdown reduced ERK1/2 activation but not Akt. Finally, DDR1 silencing but not ß1-integrin reduced the collagen induced survival, ERK1/2 phosphorylation and the expression of Kv10.1 and Orai1. Together these data show that the Kv10.1/Orai1 complex is involved in BC cell survival and this is dependent on collagen 1/DDR1 pathway. Therefore, they represent a checkpoint of tumor progression induced by the tumor microenvironment.

SELECTION OF CITATIONS
SEARCH DETAIL
...