Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Neurophysiol ; 129(5): 1259-1277, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37073966

ABSTRACT

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune-mediated neuromuscular disease thought to be caused by autoantibodies against P/Q-type voltage-gated calcium channels (VGCCs), which attack and reduce the number of VGCCs within transmitter release sites (active zones; AZs) at the neuromuscular junction (NMJ), resulting in neuromuscular weakness. However, patients with LEMS also have antibodies to other neuronal proteins, and about 15% of patients with LEMS are seronegative for antibodies against VGCCs. We hypothesized that a reduction in the number of P/Q-type VGCCs alone is not sufficient to explain LEMS effects on transmitter release. Here, we used a computational model to study a variety of LEMS-mediated effects on AZ organization and transmitter release constrained by electron microscopic, pharmacological, immunohistochemical, voltage imaging, and electrophysiological observations. We show that models of healthy AZs can be modified to predict the transmitter release and short-term facilitation characteristics of LEMS and that in addition to a decrease in the number of AZ VGCCs, disruption in the organization of AZ proteins, a reduction in AZ number, a reduction in the amount of synaptotagmin, and the compensatory expression of L-type channels outside the remaining AZs are important contributors to LEMS-mediated effects on transmitter release. Furthermore, our models predict that antibody-mediated removal of synaptotagmin in combination with disruption in AZ organization alone could mimic LEMS effects without the removal of VGCCs (a seronegative model). Overall, our results suggest that LEMS pathophysiology may be caused by a collection of pathological alterations to AZs at the NMJ, rather than by a simple loss of VGCCs.NEW & NOTEWORTHY We used a computational model of the active zone (AZ) in the mammalian neuromuscular junction to investigate Lambert-Eaton myasthenic syndrome (LEMS) pathophysiology. This model suggests that disruptions in presynaptic active zone organization and protein content (particularly synaptotagmin), beyond the simple removal of presynaptic calcium channels, play an important role in LEMS pathophysiology.


Subject(s)
Lambert-Eaton Myasthenic Syndrome , Animals , Humans , Lambert-Eaton Myasthenic Syndrome/pathology , Calcium Channels/metabolism , Neuromuscular Junction/metabolism , Neurons/metabolism , Calcium Channels, Q-Type , Synaptotagmins , Mammals/metabolism
2.
Hum Mol Genet ; 32(11): 1901-1911, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36757138

ABSTRACT

Spinal muscular atrophy (SMA) is a monogenic disease that clinically manifests as severe muscle weakness owing to neurotransmission defects and motoneuron degeneration. Individuals affected by SMA experience neuromuscular weakness that impacts functional activities of daily living. We have used a mouse model of severe SMA (SMNΔ7) to test whether a calcium channel gating modifier (GV-58), alone or in combination with a potassium channel antagonist (3,4-diaminopyridine; 3,4-DAP), can improve neuromuscular function in this mouse model. Bath application of GV-58 alone or in combination with 3,4-DAP significantly restored neuromuscular transmission to control levels in both a mildly vulnerable forearm muscle and a strongly vulnerable trunk muscle in SMNΔ7 mice at postnatal days 10-12. Similarly, acute subcutaneous administration of GV-58 to postnatal day 10 SMNΔ7 mice, alone or in combination with 3,4-DAP, significantly increased a behavioral measure of muscle strength. These data suggest that GV-58 may be a promising treatment candidate that could address deficits in neuromuscular function and strength and that the addition of 3,4-DAP to GV-58 treatment could aid in restoring function in SMA.


Subject(s)
Activities of Daily Living , Muscular Atrophy, Spinal , Humans , Mice , Animals , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Motor Neurons/physiology , Muscle, Skeletal , Disease Models, Animal , Synaptic Transmission , Survival of Motor Neuron 1 Protein
3.
Biomolecules ; 12(6)2022 05 24.
Article in English | MEDLINE | ID: mdl-35740866

ABSTRACT

The mouse neuromuscular junction (NMJ) has long been used as a model synapse for the study of neurotransmission in both healthy and disease states of the NMJ. Neurotransmission from these neuromuscular nerve terminals occurs at highly organized structures called active zones (AZs). Within AZs, the relationships between the voltage-gated calcium channels and docked synaptic vesicles govern the probability of acetylcholine release during single action potentials, and the short-term plasticity characteristics during short, high frequency trains of action potentials. Understanding these relationships is important not only for healthy synapses, but also to better understand the pathophysiology of neuromuscular diseases. In particular, we are interested in Lambert-Eaton myasthenic syndrome (LEMS), an autoimmune disorder in which neurotransmitter release from the NMJ decreases, leading to severe muscle weakness. In LEMS, the reduced neurotransmission is traditionally thought to be caused by the antibody-mediated removal of presynaptic voltage-gated calcium channels. However, recent experimental data and AZ computer simulations have predicted that a disruption in the normally highly organized active zone structure, and perhaps autoantibodies to other presynaptic proteins, contribute significantly to pathological effects in the active zone and the characteristics of chemical transmitters.


Subject(s)
Autoimmune Diseases , Lambert-Eaton Myasthenic Syndrome , Animals , Autoantibodies , Autoimmune Diseases/pathology , Calcium Channels , Lambert-Eaton Myasthenic Syndrome/pathology , Mice , Neuromuscular Junction/pathology
4.
Sci Rep ; 11(1): 11051, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040085

ABSTRACT

Amyotrophic lateral sclerosis (ALS) remains a devastating motor neuron disease with limited treatment options. Oxaloacetate treatment has a neuroprotective effect in rodent models of seizure and neurodegeneration. Therefore, we treated the ALS model superoxide dismutase 1 (SOD1) G93A mice with oxaloacetate and evaluated their neuromuscular function and lifespan. Treatment with oxaloacetate beginning in the presymptomatic stage significantly improved neuromuscular strength measured during the symptomatic stage in the injected mice compared to the non-treated group. Oxaloacetate treatment starting in the symptomatic stage significantly delayed limb paralysis compared with the non-treated group. For lifespan analysis, oxaloacetate treatment did not show a statistically significant positive effect, but the treatment did not shorten the lifespan. Mechanistically, SOD1G93A mice showed increased levels of tumor necrosis factor-α (TNFα) and peroxisome proliferative activated receptor gamma coactivator 1α (PGC-1α) mRNAs in the spinal cord. However, oxaloacetate treatment reverted these abnormal levels to that of wild-type mice. Similarly, the altered expression level of total NF-κB protein returned to that of wild-type mice with oxaloacetate treatment. These results suggest that the beneficial effects of oxaloacetate treatment in SOD1G93A mice may reflect the effects on neuroinflammation or bioenergetic stress.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Motor Activity/drug effects , Oxaloacetic Acid/pharmacology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Spinal Cord/drug effects , Tumor Necrosis Factor-alpha/metabolism , Animals , Disease Models, Animal , Inflammation/drug therapy , Inflammation/metabolism , Longevity/drug effects , Mice , Motor Neurons/drug effects , Motor Neurons/metabolism , Oxaloacetic Acid/therapeutic use , Spinal Cord/metabolism , Superoxide Dismutase/metabolism
5.
Front Mol Neurosci ; 13: 568426, 2020.
Article in English | MEDLINE | ID: mdl-33328881

ABSTRACT

The neuromuscular junction (NMJ) is a chemical synapse formed between a presynaptic motor neuron and a postsynaptic muscle cell. NMJs in most vertebrate species share many essential features; however, some differences distinguish human NMJs from others. This review will describe the pre- and postsynaptic structures of human NMJs and compare them to NMJs of laboratory animals. We will focus on age-dependent declines in function and changes in the structure of human NMJs. Furthermore, we will describe insights into the aging process revealed from mouse models of accelerated aging. In addition, we will compare aging phenotypes to other human pathologies that cause impairments of pre- and postsynaptic structures at NMJs. Finally, we will discuss potential intervention approaches for attenuating age-related NMJ dysfunction and sarcopenia in humans.

6.
Neurosci Lett ; 715: 134644, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31765730

ABSTRACT

Super-resolution microscopy techniques offer subdiffraction limited resolution that is two- to ten-fold improved compared to that offered by conventional confocal microscopy. This breakthrough in resolution for light microscopy has contributed to new findings in neuroscience and synapse biology. This review will focus on the Structured Illumination Microscopy (SIM), Stimulated emission depletion (STED) microscopy, and Stochastic optical reconstruction microscopy (STORM) / Single molecule localization microscopy (SMLM) techniques and compare them for the better understanding of their differences and their suitability for the analysis of synapse biology. In addition, we will discuss a few practical aspects of these microscopic techniques, including resolution, image acquisition speed, multicolor capability, and other advantages and disadvantages. Tips for the improvement of microscopy will be introduced; for example, information resources for recommended dyes, the limitations of multicolor analysis, and capabilities for live imaging. In addition, we will summarize how super-resolution microscopy has been used for analyses of neuromuscular junctions and synapses.


Subject(s)
Microscopy, Fluorescence/methods , Neuromuscular Junction/cytology , Synapses , Animals , Humans
7.
Neurosci Res ; 127: 78-88, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29221906

ABSTRACT

Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin ß2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones.


Subject(s)
Aging/pathology , Neuromuscular Diseases/pathology , Neuromuscular Junction , Presynaptic Terminals , Animals , Humans , Mammals , Neuromuscular Junction/pathology , Neuromuscular Junction/physiopathology , Neuromuscular Junction/ultrastructure , Presynaptic Terminals/metabolism , Presynaptic Terminals/pathology , Presynaptic Terminals/ultrastructure
8.
J Virol ; 92(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29237843

ABSTRACT

Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication.IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly associated with the replicating single-stranded DNA viral genome and played a critical role in viral DNA replication. In contrast, the DNA damage response-induced phosphorylated forms of RPA32 were dispensable for viral DNA replication.


Subject(s)
Cell Division , DNA Replication , Host-Pathogen Interactions , Parvoviridae Infections/virology , Parvovirus B19, Human/genetics , Parvovirus B19, Human/metabolism , Virus Replication , Bromodeoxyuridine/metabolism , CD36 Antigens/analysis , CD36 Antigens/metabolism , Cell Cycle , Cell Cycle Checkpoints , Cell Line , DNA Damage , DNA Polymerase III , DNA Polymerase beta , DNA Repair , DNA, Single-Stranded/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/virology , Fetal Death , Gene Expression Regulation, Viral/physiology , Genome, Viral , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/physiology , Humans , Parvovirus B19, Human/pathogenicity , Phosphorylation , Protein Interaction Maps , Red-Cell Aplasia, Pure/virology , Replication Protein A/genetics , S Phase , Transcriptome , Viremia/virology
9.
Front Neurosci ; 11: 473, 2017.
Article in English | MEDLINE | ID: mdl-28890682

ABSTRACT

Motor neurons in amyotrophic lateral sclerosis (ALS) patients and animal models show degeneration from the nerve terminal, known as dying-back neuropathy. To investigate the mechanism underlying this neuropathy, we analyzed the neuromuscular junctions (NMJs) and motor neuron cell bodies in SOD1G93A mice using electron microscopy. NMJs of SOD1G93A mice exhibited significantly higher numbers of autophagosomes and degenerated mitochondria compared to wild-type controls. Mitophagosomes were identified in the NMJ presynaptic terminals of wild-type mice and SOD1G93A mice. However, the number of mitophagosomes did not increase significantly in SOD1G93A NMJs indicating a defect in mitophagy, the autophagic process to degrade mitochondria. Consistent with this, proteins essential for mitophagy, p62/SQSTM1, Bnip3, Pink1, and Parkin were down-regulated in motor neurons in SOD1G93A mice. Importantly, SQSTM1 is one of the genes mutated in familial ALS patients. We evaluated the effect of impaired mitophagy on motor neurons by analyzing the double knockout mice of Pink1 and Parkin, two genes responsible for sensing depolarized mitochondria and delivering degenerated mitochondria to mitophagosomes. The double knockout mice exhibited NMJ degeneration, including axon swelling and NMJ fragmentation at 4 months of age. These phenotypes were rarely observed in wild-type control mice of the same age. The protein level of ATP synthase ß subunit increased in the NMJ presynaptic terminals, suggesting the accumulation of mitochondria at NMJs of the double knockout mice. Importantly, NMJ denervation was observed in the double knockout mice. These data suggest that the reduced mitophagy function in motor neurons of SOD1G93A mice is one of the mechanisms causing degeneration of ALS NMJs.

10.
Front Neurosci ; 11: 239, 2017.
Article in English | MEDLINE | ID: mdl-28566998

ABSTRACT

Hypoxia inducible factor-1 (HIF-1) is a key regulator in hypoxia and can determine the fate of brain cells during ischemia. However, the mechanism of HIF-1 regulation is still not fully understood in ischemic brains. We tested a hypothesis that both the 26S and the 20S proteasomal pathways were involved in HIF-1α degradation under ischemic conditions. Using in vitro ischemic model (oxygen and glucose deprivation) and a mouse model of middle cerebral artery occlusion, we tested effects of inhibitors of proteasomes and prolyl hydroxylase (PHD) on HIF-1α stability and brain injury in cerebral ischemia. We observed that 30 and 60 min of oxygen-glucose deprivation significantly increased the 20S proteasomal activity. We demonstrated that proteasome inhibitors increased HIF-1α stabilization and cell viability and were more effective than PHD inhibitors in primary cultured cortical neurons exposed to oxygen and glucose deprivation. Furthermore, the administration of the proteasome inhibitor, epoxomicin, to mice resulted in smaller infarct size and brain edema than a PHD inhibitor. Our results indicate that 20S proteasomes are involved in HIF-1α degradation in ischemic neurons and that proteasomal inhibition provides more HIF-1α stabilization and neuroprotection than PHD inhibition in cerebral ischemia.

11.
Sci Rep ; 6: 27935, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27321892

ABSTRACT

Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.


Subject(s)
Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neuromuscular Junction/metabolism , Neuropeptides/metabolism , Presynaptic Terminals/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Aging/metabolism , Animals , Female , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Nonlinear Optical Microscopy/methods
12.
J Neurosci Res ; 93(4): 623-32, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25421886

ABSTRACT

Ischemia initiates a complicated biochemical cascade of events that triggers neuronal death. This study focuses on glutamate-mediated neuronal tolerance to ischemia-reperfusion. We employed an animal model of lifelong excess release of glutamate, the glutamate dehydrogenase 1 transgenic (Tg) mouse, as a model of in vivo glutamate preconditioning. Nine- and twenty-two-month-old Tg and wild-type (wt) mice were subjected to 90 min of middle cerebral artery occlusion, followed by 24 hr of reperfusion. The Tg mice suffered significantly reduced infarction and edema volume compared with their wt counterparts. We further analyzed proteasomal activity, level of ubiquitin immunostaining, and microtubule-associated protein-2A (MAP2A) expression to understand the mechanism of neuroprotection observed in the Tg mice. We found that, in the absence of ischemia, the Tg mice exhibited higher activity of the 20S and 26S proteasomes, whereas there was no significant difference in the level of hippocampal ubiquitin immunostaining between wt and Tg mice. A surprising, significant increase was observed in MAP2A expression in neurons of the Tg hippocampus following ischemia-reperfusion compared with that in wt hippocampus. The results suggest that increased proteasome activity and MAP2A synthesis and transport might account for the effectiveness of glutamate preconditioning against ischemia-reperfusion.


Subject(s)
Brain Ischemia/prevention & control , Brain , Gene Expression Regulation/physiology , Glutamic Acid/administration & dosage , Neuroprotective Agents/administration & dosage , Age Factors , Analysis of Variance , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Edema , Brain Infarction/etiology , Brain Ischemia/genetics , Disease Models, Animal , Drug Administration Schedule , Gene Expression Regulation/drug effects , Glutamate Dehydrogenase , Mice, Inbred C57BL , Mice, Transgenic , Microtubule-Associated Proteins , Proteasome Endopeptidase Complex/metabolism , Receptors, Glutamate/genetics , Ubiquitin/metabolism
13.
ASN Neuro ; 4(4): 231-41, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22540931

ABSTRACT

Stroke is a major neurological disorder characterized by an increase in the Glu (glutamate) concentration resulting in excitotoxicity and eventually cellular damage and death in the brain. HIF-1 (hypoxia-inducible factor-1), a transcription factor, plays an important protective role in promoting cellular adaptation to hypoxic conditions. It is known that HIF-1α, the regulatable subunit of HIF-1, is expressed by astrocytes under severe ischaemia. However, the effect of HIF-1 on astrocytes following Glu toxicity during ischaemia has not been well studied. We investigated the role of HIF-1 in protecting ischaemic astrocytes against Glu toxicity. Immunostaining with GFAP (glial fibrillary acidic protein) confirmed the morphological modification of astrocytes in the presence of 1 mM Glu under normoxia. Interestingly, when the astrocytes were exposed to severe hypoxia (0.1% O2), the altered cell morphology was ameliorated with up-regulation of HIF-1α. To ascertain HIF-1's protective role, effects of two HIF-1α inhibitors, YC-1 [3-(50-hydroxymethyl-20-furyl)-1-benzylindazole] and 2Me2 (2-methoxyoestradiol), were tested. Both the inhibitors decreased the recovery in astrocyte morphology and increased cell death. Given that ischaemia increases ROS (reactive oxygen species), we examined the role of GSH (reduced glutathione) in the mechanism for this protection. GSH was increased under hypoxia, and this correlated with an increase in HIF-1α stabilization in the astrocytes. Furthermore, inhibition of GSH with BSO (l-butathione sulfoximine) decreased HIF-1α expression, suggesting its role in the stabilization of HIF-1α. Overall, our results indicate that the expression of HIF-1α under hypoxia has a protective effect on astrocytes in maintaining cell morphology and viability in response to Glu toxicity.


Subject(s)
Astrocytes/drug effects , Excitatory Amino Acids/toxicity , Glutamic Acid/toxicity , Hypoxia-Inducible Factor 1/pharmacology , 2-Methoxyestradiol , Analysis of Variance , Animals , Animals, Newborn , Cell Hypoxia/drug effects , Cerebral Cortex/cytology , Cytotoxicity Tests, Immunologic , Dose-Response Relationship, Drug , Enzyme Activators/pharmacology , Estradiol/analogs & derivatives , Estradiol/pharmacology , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/metabolism , Glutathione/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Indazoles/pharmacology , L-Lactate Dehydrogenase/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...