Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 141: 105149, 2022 02.
Article in English | MEDLINE | ID: mdl-34953359

ABSTRACT

Seasonal human influenza is a serious respiratory infection caused by influenza viruses that can be found all over the world. Type A influenza is a contagious viral infection that, if left untreated, can lead to life-threatening consequences. Fortunately, the plant kingdom has many potent medicines with broad-spectrum antiviral activity. Herein, six plant constituents, namely Tanshinone IIA 1, Carnosic acid 2, Rosmarinic acid 3, Glycyrrhetinic acid 4, Baicalein 5, and Salvianolic acid B 6, were screened for their antiviral activities against H1N1 virus using in vitro and in silico approaches. Hence, their anti-influenza activities were tested in vitro to determine inhibitory concentration 50 (IC50) values after measuring their CC50 values using MTT assay on MDCK cells. Interestingly, Tanshinone IIA (TAN) 1 was the most promising member with CC50 = 9.678 µg/ml. Moreover, the plaque reduction assay carried on TAN 1 revealed promising viral inhibition percentages of 97.9%, 95.8%, 94.4%, and 91.7% using concentrations 0.05 µg/µl, 0.025 µg/µl, 0.0125 µg/µl, and 0.006 µg/µl, respectively. Furthermore, in silico molecular docking disclosed the superior affinities of Salvianolic acid B (SAL) 6 towards both surface glycoproteins of influenza A virus (namely, hemagglutinin (HA) and neuraminidase (NA)). The docked complexes of both SAL and TAN inside HA and NA receptor pockets were selected for 100 ns MD simulations followed by MM-GBSA binding free energy calculation to confirm the docking results and give more insights regarding the stability of both compounds inside influenza mentioned receptors, respectively. The selection criteria of the previously mentioned complexes were based on the fact that SAL showed the highest docking scores on both viral HA and NA glycoproteins whereas TAN achieved the best inhibitory activity on the other hand. Finally, we urge more advanced preclinical and clinical research, particularly for TAN, which could be used to treat the human influenza A virus effectively.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Abietanes , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A virus/metabolism , Molecular Docking Simulation , Neuraminidase/metabolism , Neuraminidase/pharmacology
2.
J Pharm Sci ; 110(9): 3298-3305, 2021 09.
Article in English | MEDLINE | ID: mdl-34097977

ABSTRACT

Nano drug delivery has been recently used to enhance the stability and bioavailability of chemotherapeutic agents. In this study, Chitosan/protamine nanocarrier was synthesized and used to encapsulate curcumin (CUR). The physicochemical properties of the empty carrier (CHPNPs) and curcumin-containing carrier (CU-CHPNPs) were characterized by TEM imaging, Zetasizer, and FT-IR spectroscopy. The antitumor activity of the prepared nanoparticles was assessed by determination of cell count, cell viability, the level of NF-κB, IL-6, and TNF-α and Bcl-2 gene expression in breast cancer cells (MCF-7). The results revealed that the obtained CU-CHPNPs had an average hydrodynamic size of 200 nm, zeta potential of +26.66 mv, and showed a drug encapsulation efficiency of 67%, and drug loading capacity of 40.20%. The cell-based assay showed a significant reduction in the cell viability, and NF-κB, TNF-α, and IL-6 levels upon treatment with CU-CHPNPs as compared to free CUR. Finally, the (CU-CHPNPs) downregulated the expression of the Bcl-2 anti-apoptotic gene more effectively than CUR and the CHPNPs comparing with the ß Actin housekeeping gene. This study concluded that the nano-encapsulation of CUR significantly enhances its antitumor efficacy via inhibition of NF-κB, IL-6, and TNF-α and downregulation of Bcl-2.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Chitosan , Curcumin , Nanoparticles , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Curcumin/pharmacology , Cytokines , Drug Carriers , Female , Gene Expression , Humans , NF-kappa B , Protamines , Spectroscopy, Fourier Transform Infrared
3.
RSC Adv ; 11(47): 29267-29286, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-35492070

ABSTRACT

Six compounds namely, tanshinone IIA (1), carnosic acid (2), rosmarinic acid (3), salvianolic acid B (4), baicalein (5), and glycyrrhetinic acid (6) were screened for their anti-SARS-CoV-2 activities against both the spike (S) and main protease (Mpro) receptors using molecular docking studies. Molecular docking recommended the superior affinities of both salvianolic acid B (4) and glycyrrhetinic acid (6) as the common results from the previously published computational articles. On the other hand, their actual anti-SARS-CoV-2 activities were tested in vitro using plaque reduction assay to calculate their IC50 values after measuring their CC50 values using MTT assay on Vero E6 cells. Surprisingly, tanshinone IIA (1) was the most promising member with IC50 equals 4.08 ng µl-1. Also, both carnosic acid (2) and rosmarinic acid (3) showed promising IC50 values of 15.37 and 25.47 ng µl-1, respectively. However, salvianolic acid (4) showed a weak anti-SARS-CoV-2 activity with an IC50 value equals 58.29 ng µl-1. Furthermore, molecular dynamics simulations for 100 ns were performed for the most active compound from the computational point of view (salvianolic acid 4), besides, the most active one biologically (tanshinone IIA 1) on both the S and Mpro complexes of them (four different molecular dynamics processes) to confirm the docking results and give more insights regarding the stability of both compounds inside the SARS-CoV-2 mentioned receptors, respectively. Also, to understand the mechanism of action for the tested compounds towards SARS-CoV-2 inhibition it was necessary to examine the mode of action for the most two promising compounds, tanshinone IIA (1) and carnosic acid (2). Both compounds (1 and 2) showed very promising virucidal activity with a most prominent inhibitory effect on viral adsorption rather than its replication. This recommended the predicted activity of the two compounds against the S protein of SARS-CoV-2 rather than its Mpro protein. Our results could be very promising to rearrange the previously mentioned compounds based on their actual inhibitory activities towards SARS-CoV-2 and to search for the reasons behind the great differences between their in silico and in vitro results against SARS-CoV-2. Finally, we recommend further advanced preclinical and clinical studies especially for tanshinone IIA (1) to be rapidly applied in COVID-19 management either alone or in combination with carnosic acid (2), rosmarinic acid (3), and/or salvianolic acid (4).

SELECTION OF CITATIONS
SEARCH DETAIL
...