Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(24): 35055-35068, 2024 May.
Article in English | MEDLINE | ID: mdl-38714618

ABSTRACT

Mercury (Hg) is a prevalent and harmful contaminant that persists in the environment. For phytoremediation, it is important to discover which plants can bioaccumulate meaningful amounts of Hg while also tolerating its toxicity. Additionally, increasing biodiversity could create a more resilient and self-sustaining system for remediation. This study explores whether mixed populations of Lemna minor and Spirodela polyrhiza can better bioaccumulate and tolerate Hg than monocultures. Mono- and mixed cultures of L. minor and S. polyrhiza were grown in mesocosms of 0.5 µg/L or 100 µg/L Hg (HgCl2) spiked water for 96 h. Change in weight of duckweed was used to assess Hg tolerance. Diffusive gradients in thin-films (DGTs) were used as surrogate monitoring devices for bioavailable levels of Hg. For biomass growth, the mixed culture of the L. minor was greater than the monoculture at the high dose. The L. minor accumulated more Hg in the mixed culture at the low dose while the S. polyrhiza was higher in the mixed at the high dose. Hg speciation in water was modeled using Windermere Humic Aqueous Model 7 (WHAM7) to compare the bioavailable species indicated by the DGTs.  Potentially due to the controlled conditions, the WHAM7 output of bioavailable Hg was almost 1:1 to that estimated by the DGTs, indicating good predictive capability of geochemical modeling and passive sampler DGT on metal bioavailability. Overall, the mixed cultures statistically performed as well as or better than the monocultures when tolerating and bioaccumulating Hg. However, there needs to be further work to see if the significant differences translate into practical differences worth the extra resources to maintain multiple species.


Subject(s)
Araceae , Biodegradation, Environmental , Mercury , Mercury/metabolism , Araceae/metabolism , Bioaccumulation , Water Pollutants, Chemical
2.
Environ Monit Assess ; 194(8): 571, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35796892

ABSTRACT

Metal biogeochemistry in the sediment, water, and the sediment-water interface (SWI) was studied in a free water surface constructed wetland. Concentrations of labile copper (Cu), zinc (Zn), sulfate, chloride, and dissolved organic carbon (DOC) were measured with the diffusive gradients in thin film (DGT) and peeper. A good agreement between peeper- and DGT-measured metals was observed for Cu (regression r2 = 0.3, 95% CI of the slopes > 0), but not for Zn (95% CI of the slopes overlapped with 0), which was attributed to the different complexed compounds between Cu and Zn in porewater. The depth profile of labile metals in sediment porewater varied with time and was consistent with the solid-phase metal deposition, showing higher concentrations in the surface layer (3 to - 3 cm) than in the bottom layer (- 4 to - 13 cm). The depth-averaged labile Cu and Zn concentrations measured by DGT were 1.0 and 3.1 µg/L, and labile sulfate, chloride, and DOC concentrations measured by peeper were 1.8, 3.6, and 2.1 mg/L, respectively. A sharp decrease in sulfate occurred in September when sulfate concentrations became the lowest among sampling months. This was caused by the seasonal sulfur cycles in the wetland, where the dominant sulfur reaction is sulfate reduction in warm seasons and sulfide oxidation in cold seasons. Different metal-removal mechanisms were observed in the two wetland cells; sulfur dynamics controlled the removal processes in the cell without frequent disturbance but failed to influence metal removal in the cell with frequent disturbance due to the interruption of anoxic layers. The flux ratios that compare labile element concentrations between the water column and the SWI (R-Cu, R-Zn, R-DOC, R-sulfate, and R-chloride) were generated to determine metal diffusive fluxes at the interface. Labile Zn was mostly transported from the water to the SWI during all seasons (R-Zn < 1 for all months except January). Labile Cu moved from the SWI to the water during the warm months (R-Cu < 1), which was explained by the bioturbation-induced transport of organic matter based on the positive correlations between R-Cu and R-DOC. In general, sediment can serve either as a sink or a source depending on the environmental conditions, metal speciation, and presence of living organisms. Metal flux at the SWI is a key component in the biogeochemical cycling of a constructed wetland.


Subject(s)
Water Pollutants, Chemical , Wetlands , Chlorides , Environmental Monitoring , Geologic Sediments/chemistry , Metals , Sulfates , Sulfur , Water/chemistry , Water Pollutants, Chemical/analysis , Zinc
3.
ACS Appl Mater Interfaces ; 12(23): 25645-25657, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32412742

ABSTRACT

This work focused on the delivery of dsRNA either complexed with poly-l-arginine (PLR-polyplex) or loaded onto poly-l-arginine functionalized 20 nm Au nanoparticles (PLR/Au NPs). RNA interference (RNAi) of a luciferase gene expressed in Spodopteria frugiperda Sf9 stable cell line (Sf9_LUC) was used as a model system. The binding affinity of dsRNA with two modes of functionalization of Au NPs was investigated: the electrostatic binding of PLR on citrate stabilized Au NPs (e-PLR/Au NPs) via the layer-by-layer method or the covalent-linking reaction of the polymer with NHS groups on the Au NPs surface (c-PLR/Au NPs) with excess groups quenched with either hydroxylamine (c-PLR/Au/Hyd NPs) or bovine serum albumin (c-PLR/Au/BSA NPs). The formation of PLR-polyplex particles resulting from the complexation of PLR and dsRNA were revealed by transmission electron microscope (TEM), scanning transmission electron microscope (STEM), and elemental mapping by energy dispersive X-ray spectroscopy (EDS). Luciferase gene knockdown was evaluated after exposure of Sf9 cells for 72 h to 600 ng of dsRNA. Gene knockdown (GK) was found to be more efficient by exposing Sf9 cells to nanoscaled (size <100 nm) PLR-polyplex (58% GK), in contrast to microscaled (size >1 µm) PLR-polyplex (20% GK) or covalent PLR/Au/Hyd (7% GK) particles. The replacement of hydroxylamine by bovine serum albumin as ligand has significantly enhanced the efficiency of GK (31% GK). Investigation of endosomal escape, a key physiological barrier for dsRNA delivery, with CypHer5E labeled dsRNA showed the good ability for the dsRNA conjugated to the different nanosystems to enter the cells compared to the unconjugated one. This study provides valuable information concerning the required properties of materials used for dsRNA delivery in lepidopteran cells such as nanoparticle size, stability in the cell culture media, the polymer molecular weight and binding strength to the nanoparticle, and the nature of ligands on the surface.


Subject(s)
Drug Carriers/chemistry , Metal Nanoparticles/chemistry , Peptides/chemistry , RNA Interference/drug effects , RNA, Double-Stranded/pharmacology , Animals , Gene Knockdown Techniques , Gold/chemistry , Luciferases/genetics , Sf9 Cells , Spodoptera
4.
Environ Pollut ; 247: 917-926, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30823346

ABSTRACT

Manufactured nanoparticles (MNPs) undergo transformation immediately after they enter wastewater treatment streams and during their partitioning to sewage sludge, which is applied to agricultural soils in form of biosolids. We examined toxicogenomic responses of the model nematode Caenorhabditis elegans to pristine and transformed ZnO-MNPs (phosphatized pZnO- and sulfidized sZnO-MNPs). To account for the toxicity due to dissolved Zn, a ZnSO4 treatment was included. Transformation of ZnO-MNPs reduced their toxicity by nearly ten-fold, while there was almost no difference in the toxicity of pristine ZnO-MNPs and ZnSO4. This combined with the fact that far more dissolved Zn was released from ZnO- compared to pZnO- or sZnO-MNPs, suggests that dissolution of pristine ZnO-MNPs is one of the main drivers of their toxicity. Transcriptomic responses at the EC30 for reproduction resulted in a total of 1161 differentially expressed genes. Fifty percent of the genes differentially expressed in the ZnSO4 treatment, including the three metal responsive genes (mtl-1, mtl-2 and numr-1), were shared among all treatments, suggesting that responses to all forms of Zn could be partially attributed to dissolved Zn. However, the toxicity and transcriptomic responses in all MNP treatments cannot be fully explained by dissolved Zn. Two of the biological pathways identified, one essential for protein biosynthesis (Aminoacyl-tRNA biosynthesis) and another associated with detoxification (ABC transporters), were shared among pristine and one or both transformed ZnO-MNPs, but not ZnSO4. When comparing pristine and transformed ZnO-MNPs, 66% and 40% of genes were shared between ZnO-MNPs and sZnO-MNPs or pZnO-MNPs, respectively. This suggests greater similarity in transcriptomic responses between ZnO-MNPs and sZnO-MNPs, while toxicity mechanisms are more distinct for pZnO-MNPs, where 13 unique biological pathways were identified. Based on these pathways, the toxicity of pZnO-MNPs is likely to be associated with their adverse effect on digestion and metabolism.


Subject(s)
Caenorhabditis elegans/drug effects , Metal Nanoparticles/toxicity , Soil Pollutants/toxicity , Zinc Oxide/toxicity , Animals , Caenorhabditis elegans/genetics , Sewage , Transcriptome/drug effects , Zinc Sulfate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...