Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 23(8): 10540-52, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25969094

ABSTRACT

We present a novel method to validate the relative amount of power carried by high order modes in a multimode fiber using a Spatial and Spectral (S(2)) imaging technique. The method can be utilized to calibrate the S(2) set-up and uses Fresnel reflections from a thin glass plate to compare theoretical values with experimental results. We have found that, in the most general case, spectral leakage and sampling errors can lead S(2) to underestimate the multipath interference (MPI) of high order modes by several decibels, thus significantly impairing the result of the measurement. On the other hand, by applying suitable corrections as described in this work, we demonstrate that the S(2) produces MPI estimates that are accurate to within 1dB or better.

2.
Opt Express ; 21(23): 28559-69, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24514368

ABSTRACT

The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 µm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S2) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008 nm over 290 m of 19 cell HC-PBGF is reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...