Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(16): 6130-6138, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35430813

ABSTRACT

We present DEIMoS: Data Extraction for Integrated Multidimensional Spectrometry, a Python application programming interface (API) and command-line tool for high-dimensional mass spectrometry data analysis workflows that offers ease of development and access to efficient algorithmic implementations. Functionality includes feature detection, feature alignment, collision cross section (CCS) calibration, isotope detection, and MS/MS spectral deconvolution, with the output comprising detected features aligned across study samples and characterized by mass, CCS, tandem mass spectra, and isotopic signature. Notably, DEIMoS operates on N-dimensional data, largely agnostic to acquisition instrumentation; algorithm implementations simultaneously utilize all dimensions to (i) offer greater separation between features, thus improving detection sensitivity, (ii) increase alignment/feature matching confidence among data sets, and (iii) mitigate convolution artifacts in tandem mass spectra. We demonstrate DEIMoS with LC-IMS-MS/MS metabolomics data to illustrate the advantages of a multidimensional approach in each data processing step.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Algorithms , Chromatography, Liquid/methods , Metabolomics/methods , Software , Tandem Mass Spectrometry/methods
2.
J Am Soc Mass Spectrom ; 33(3): 482-490, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35041405

ABSTRACT

Proton affinity is a major factor in the atmospheric pressure chemical ionization of illicit drugs. The detection of illicit drugs by mass spectrometry and ion mobility spectrometry relies on the analytes having greater proton affinities than background species. Evaluating proton affinities for fentanyl and its analogues is informative for predicting the likelihood of ionization in different environments and for optimizing the compounds' ionization and detection, such as through the addition of dopant chemicals. Herein, density functional theory was used to computationally determine the proton affinity and gas-phase basicity of 15 fentanyl compounds and several relevant molecules as a reference point. The range of proton affinities for the fentanyl compounds was from 1018 to 1078 kJ/mol. Fentanyl compounds with the higher proton affinity values appeared to form a bridge between the oxygen on the amide and the protonated nitrogen on the piperidine ring based on models and calculated bond distances. Experiments with fragmentation of proton-bound clusters using atmospheric flow tube-mass spectrometry (AFT-MS) provided estimates of relative proton affinities and showed proton affinity values of fentanyl compounds >1000 kJ/mol, which were consistent with the computational results. The high proton affinities of fentanyl compounds facilitate their detection by ambient ionization techniques in complex environments. The detection limits of the fentanyl compounds with AFT-MS are in the low femtogram range, which demonstrates the feasibility of trace vapor drug detection.


Subject(s)
Fentanyl , Mass Spectrometry/methods , Atmospheric Pressure , Fentanyl/analogs & derivatives , Fentanyl/analysis , Fentanyl/chemistry , Gases/analysis , Gases/chemistry , Limit of Detection , Protons , Reproducibility of Results , Substance Abuse Detection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...