Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 180(5): 3457-66, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18292572

ABSTRACT

In mammals, ceramide kinase (CerK)-mediated phosphorylation of ceramide is the only known pathway to ceramide-1-phosphate (C1P), a recently identified signaling sphingolipid metabolite. To help delineate the roles of CerK and C1P, we knocked out the gene of CerK in BALB/c mice by homologous recombination. All in vitro as well as cell-based assays indicated that CerK activity is completely abolished in Cerk-/- mice. Labeling with radioactive orthophosphate showed a profound reduction in the levels of de novo C1P formed in Cerk-/- macrophages. Consistently, mass spectrometry analysis revealed a major contribution of CerK to the formation of C16-C1P. However, the significant residual C1P levels in Cerk-/- animals indicate that alternative routes to C1P exist. Furthermore, serum levels of proapoptotic ceramide in these animals were significantly increased while levels of dihydroceramide as the biosynthetic precursor were reduced. Previous literature pointed to a role of CerK or C1P in innate immune cell function. Using a variety of mechanistic and disease models, as well as primary cells, we found that macrophage- and mast cell-dependent readouts are barely affected in the absence of CerK. However, the number of neutrophils was strikingly reduced in blood and spleen of Cerk-/- animals. When tested in a model of fulminant pneumonia, Cerk-/- animals developed a more severe disease, lending support to a defect in neutrophil homeostasis following CerK ablation. These results identify ceramide kinase as a key regulator of C1P, dihydroceramide and ceramide levels, with important implications for neutrophil homeostasis and innate immunity regulation.


Subject(s)
Neutropenia/enzymology , Neutropenia/immunology , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Pneumonia, Pneumococcal/enzymology , Pneumonia, Pneumococcal/immunology , Streptococcus pneumoniae/immunology , Animals , Arthritis, Experimental/enzymology , Arthritis, Experimental/immunology , Arthritis, Experimental/microbiology , Cells, Cultured , Ceramides/metabolism , Female , Hypersensitivity/enzymology , Hypersensitivity/genetics , Hypersensitivity/immunology , Immunity, Innate/genetics , Macrophages, Peritoneal/cytology , Macrophages, Peritoneal/enzymology , Macrophages, Peritoneal/immunology , Male , Mast Cells/enzymology , Mast Cells/immunology , Mast Cells/microbiology , Mice , Mice, Inbred BALB C , Mice, Knockout , Neutropenia/genetics , Neutropenia/microbiology , Passive Cutaneous Anaphylaxis/immunology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pneumonia, Pneumococcal/genetics
2.
Immunol Lett ; 109(1): 56-63, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17292973

ABSTRACT

Sphingosine kinase (SPHK) has been implicated as an important element in neutrophil responses to diverse stimulatory agents. To get more insight into the role of the type 1 and 2 isoforms of SPHK in neutrophil functions, we made use of the respective SPHK knockout mice. Neutrophils isolated from the bone marrow of these mice showed normal increase of intracellular Ca(2+) when stimulated in vitro by fMLP, platelet-activating factor, the anaphylatoxin C5a, or ATP, and normal migration towards fMLP and C5a. Also, recruitment of neutrophils into the peritoneum towards the chemokines KC and MIP-2 or to LPS, and into the peripheral blood after fMLP injection was similar in SPHK knockout strains and wild-type animals. An in vivo model of bacterial lung infection revealed an accelerated progression of disease in SPHK2 (but not SPHK1) knockout mice as compared to wild-type controls. However, effector functions of SPHK-deficient neutrophils, such as superoxide production, beta-glucuronidase release and their capacity to kill bacteria were unchanged as compared to wild-type cells. To conclude, the data derived from SPHK knockout mice do not support the hypothesis that any of the two lipid kinases plays a crucial role in signalling downstream of various neutrophil stimuli; SPHKs appear not to be essential for neutrophil recruitment and effector functions.


Subject(s)
Neutrophils/immunology , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Animals , Calcium/metabolism , Cell Movement/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Neutrophils/metabolism , Phosphotransferases (Alcohol Group Acceptor)/immunology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pneumococcal Infections/enzymology , Pneumococcal Infections/immunology , Streptococcus pneumoniae
SELECTION OF CITATIONS
SEARCH DETAIL
...