Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 128(5): 1236-1247, 2020 May.
Article in English | MEDLINE | ID: mdl-31922640

ABSTRACT

AIMS: To evaluate the inhibitory effect of five structurally different imidazolium salts on the in vitro growth of plant pathogenic bacteria that belong to divergent taxonomic genera as well as their ability to reduce the severity of common bacterial blight of common bean caused by Xanthomonas axonopodis pv. phaseoli and bacterial speck of tomato caused by Pseudomonas syringae pv. tomato. METHODS AND RESULTS: Growth inhibition of Xanthomonas, Pseudomonas, Erwinia, Pectobacterium and Dickeya strains by imidazolium salts was assessed in vitro by radial diffusion on agar medium and by ressazurin reduction in liquid medium. The reduction of common bacterial blight and bacterial speck symptoms and the area under de disease progress curves were determined by spraying two selected imidazolium salts on healthy plants 48 h prior to inoculation with virulent strains of the bacterial pathogens. All imidazolium salts inhibited the growth of all plant pathogenic bacteria when tested by radial diffusion on agar medium. The strength of inhibition differed among imidazolium salts when tested on the same bacterial strain and among bacterial strains when tested with the same imidazolium salt. In liquid medium, most imidazolium salts presented the same minimum inhibitory concentration (MIC) and minimum bactericidal concentration values (200 µmol l-1 ), the most notable exception of which was the MIC (at least 1000 µmol l-1 ) for the dicationic MImC10 MImBr2 . The imidazolium salts C16 MImBr and C16 MImCl caused significant reductions in the severity of common bacterial blight symptoms when compared with nontreated plants. CONCLUSION: Imidazolium salts inhibit the in vitro growth of plant pathogenic bacteria and reduce plant disease symptoms to levels comparable to an authorized commercial antibiotic product. SIGNIFICANCE AND IMPACT OF THE STUDY: New compounds exhibiting broad-spectrum antibacterial activity with potential use in agriculture were identified.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Imidazoles/pharmacology , Pesticides/pharmacology , Plant Diseases/prevention & control , Bacteria/growth & development , Microbial Sensitivity Tests , Plant Diseases/microbiology , Vegetables/microbiology
2.
Mol Plant Microbe Interact ; 15(10): 1014-24, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12437299

ABSTRACT

The ability of Pseudomonas syringae to grow in planta is thought to be dependent upon the Hrp (type III secretion) system and multiple effector proteins that this system injects into plant cells. ORF5 in the conserved effector locus of the P. syringae pv. tomato DC3000 Hrp pathogenicity island was shown to encode a Hrp-secreted protein and to have a similarly secreted homolog encoded in an effector-rich pathogenicity island located elsewhere in the genome. These putative effector genes were designated hopPtoA1 and hopPtoA2, respectively. DNA gel blot analysis revealed that sequences hybridizing with hopPtoA1 were widespread among P. syringae pathovars, and some strains, like DC3000, appear to have two copies of the gene. uidA transcriptional fusions revealed that expression of hopPtoA1 and hopPtoA2 can be activated by the HrpL alternative sigma factor. hopPtoA1 and hopPtoA1/hopPtoA2 double mutants were not obviously different from wild-type P. syringae pv. tomato DC3000 in their ability to produce symptoms or to increase their total population size in host tomato and Arabidopsis leaves. However, confocal laser-scanning microscopy of GFP (green fluorescent protein)-labeled bacteria in Arabidopsis leaves 2 days after inoculation revealed that the frequency of undeveloped individual colonies was higher in the hopPtoA1 mutant and even higher in the hopPtoA1/hopPtoA2 double mutant. These results suggest that hopPtoA1 and hopPtoA2 contribute redundantly to the formation of P. syringae pv. tomato DC3000 colonies in Arabidopsis leaves.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins , Plants/microbiology , Pseudomonas/genetics , Sigma Factor , Amino Acid Sequence , Arabidopsis/microbiology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Chromosome Mapping , Green Fluorescent Proteins , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Solanum lycopersicum/microbiology , Microscopy, Confocal , Molecular Sequence Data , Mutation , Open Reading Frames/genetics , Open Reading Frames/physiology , Phenotype , Polysaccharide-Lyases/genetics , Polysaccharide-Lyases/metabolism , Pseudomonas/growth & development , Pseudomonas/pathogenicity , Sequence Homology, Amino Acid
3.
Proc Natl Acad Sci U S A ; 97(16): 8770-7, 2000 Aug 01.
Article in English | MEDLINE | ID: mdl-10922033

ABSTRACT

Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrp/hrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrp-dependent outer protein (hop) genes encode effector proteins. The hrp/hrc genes of P. syringae pv syringae 61, P. syringae pv syringae B728a, and P. syringae pv tomato DC3000 are flanked by an exchangeable effector locus and a conserved effector locus in a tripartite mosaic Hrp pathogenicity island (Pai) that is linked to a tRNA(Leu) gene found also in Pseudomonas aeruginosa but without linkage to Hrp system genes. Cosmid pHIR11 carries a portion of the strain 61 Hrp pathogenicity island that is sufficient to direct Escherichia coli and Pseudomonas fluorescens to inject HopPsyA into tobacco cells, thereby eliciting a hypersensitive response normally triggered only by plant pathogens. Large deletions in strain DC3000 revealed that the conserved effector locus is essential for pathogenicity but the exchangeable effector locus has only a minor role in growth in tomato. P. syringae secretes HopPsyA and AvrPto in culture in a Hrp-dependent manner at pH and temperature conditions associated with pathogenesis. AvrPto is also secreted by Yersinia enterocolitica. The secretion of AvrPto depends on the first 15 codons, which are also sufficient to direct the secretion of an Npt reporter from Y. enterocolitica, indicating that a universal targeting signal is recognized by the type III secretion systems of both plant and animal pathogens.


Subject(s)
Bacterial Proteins/metabolism , Pseudomonas/metabolism , Bacterial Proteins/genetics , Mosaicism , Pseudomonas/genetics
4.
Proc Natl Acad Sci U S A ; 97(9): 4856-61, 2000 Apr 25.
Article in English | MEDLINE | ID: mdl-10781092

ABSTRACT

The plant pathogenic bacterium Pseudomonas syringae is divided into pathovars differing in host specificity, with P. syringae pv. syringae (Psy) and P. syringae pv. tomato (Pto) representing particularly divergent pathovars. P. syringae hrp/hrc genes encode a type III protein secretion system that appears to translocate Avr and Hop effector proteins into plant cells. DNA sequence analysis of the hrp/hrc regions in Psy 61, Psy B728a, and Pto DC3000 has revealed a Hrp pathogenicity island (Pai) with a tripartite mosaic structure. The hrp/hrc gene cluster is conserved in all three strains and is flanked by a unique exchangeable effector locus (EEL) and a conserved effector locus (CEL). The EELs begin 3 nt downstream of the stop codon of hrpK and end, after 2.5-7.3 kb of dissimilar intervening DNA with tRNA(Leu)-queA-tgt sequences that are also found in Pseudomonas aeruginosa but without linkage to any Hrp Pai sequences. The EELs encode diverse putative effectors, including HopPsyA (HrmA) in Psy 61 and proteins similar to AvrPphE and the AvrB/AvrC/AvrPphC and AvrBsT/AvrRxv/YopJ protein families in Psy B728a. The EELs also contain mobile genetic element sequences and have a G + C content significantly lower than the rest of the Hrp Pai or the P. syringae genome. The CEL carries at least seven ORFs that are conserved between Psy B728a and Pto DC3000. Deletion of the Pto DC3000 EEL slightly reduces bacterial growth in tomato, whereas deletion of a large portion of the CEL strongly reduces growth and abolishes pathogenicity in tomato.


Subject(s)
Bacterial Proteins/genetics , Multigene Family , Plants/microbiology , Pseudomonas/genetics , Pseudomonas/pathogenicity , Base Sequence , Chromosome Mapping , Conserved Sequence , Genes, Bacterial , Solanum lycopersicum/microbiology , Molecular Sequence Data , Open Reading Frames , Plasmids , RNA, Transfer, Leu/genetics , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...