Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(8): e0289565, 2023.
Article in English | MEDLINE | ID: mdl-37611013

ABSTRACT

Insect declines have been discussed intensively among experts, policymakers, and the public. Albeit, decreasing trends have been reported for a long time for various regions in Europe and North America, but the controversial discussion over the role of specific drivers and pressures still remains. A reason for these uncertainties lies within the complex networks of inter-dependent biotic and abiotic factors as well as anthropogenic activities that influence habitats, communities, populations, and individual organisms. Many recent publications aim to identify both the extent of the observed declines and potential drivers. With this literature analysis, we provide an overview of the drivers and pressures and their inter-relationships, which were concluded in the scientific literature, using some of the best-studied insect groups as examples. We conducted a detailed literature evaluation of publications on Carabidae (Coleoptera) and Lepidoptera trends with data for at least 6 years in countries of Central and Western Europe, with a focus on agricultural landscapes. From the 82 publications identified as relevant, we extracted all reported trends and classified the respective factors described according to the DPSIR model. Further, we analysed the level of scientific verification (presumed vs correlated vs examined) within these papers for these cited stressors. The extracted trends for both species groups underline the reported overall declining trend. Whether negative or positive trends were reported in the papers, our semi-quantitative analysis shows that changes in insect populations are primarily anthropogenically driven by agriculture, climate change, nature conservation activities, urbanisation, and other anthropogenic activities. Most of the identified pressures were found to act on habitat level, only a fraction attributed to direct effects to the insects. While our analysis gives an overview of existing research concerning abundance and biodiversity trends of carabids and lepidopterans, it also shows gaps in scientific data in this area, in particular in monitoring the pressures along with the monitoring of abundance trends. The scientific basis for assessing biodiversity changes in the landscape is essential to help all stakeholders involved to shape, e.g. agriculture and other human activities, in a more sustainable way, balancing human needs such as food production with conservation of nature.


Subject(s)
Coleoptera , Lepidoptera , Humans , Animals , Insecta , Europe , Agriculture
2.
J Chem Ecol ; 39(8): 1112-4, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23846185

ABSTRACT

Weevils of the genus Cionus (Curculionidae, Mecininae) sequester the iridoid glycosides (IGs) aucubin and catalpol from their host plants Scrophularia or Verbascum (Scrophulariaceae). Cionus hortulanus is the only member of the genus that feeds on both plant genera. We previously showed that sequestration patterns in C. hortulanus depend on the local host. To investigate whether IG patterns are driven by their availability in the hosts or genetic differences between populations, we collected C. hortulanus from S. nodosa in the field and reared them either on S. nodosa or on V. nigrum. The differences in IG concentrations were specific for the host plant upon which the weevils developed. Similar to monophagous species of the Cionini, individuals from S. nodosa had more aucubin than catalpol and mirrored the concentrations of their host plants. Specimens from V. nigrum, on the other hand, had higher concentrations of aucubin and of catalpol than their host. On V. nigrum, the ratio of catalpol to aucubin differed significantly between plant and beetle samples due to much higher catalpol concentrations in the weevils. Our data thus contradict genetically fixed differences between populations living on either plant but rather document the host plants' influence on the beetles' metabolism.


Subject(s)
Iridoid Glucosides/chemistry , Weevils/physiology , Animals , Chromatography, High Pressure Liquid , Female , Iridoid Glucosides/isolation & purification , Larva/physiology , Plant Leaves/chemistry , Plant Leaves/metabolism , Pupa/physiology , Scrophularia/chemistry , Scrophularia/metabolism , Spectrometry, Mass, Electrospray Ionization , Verbascum/chemistry , Verbascum/metabolism , Weevils/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...