Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(9)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602775

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (aHSCT) can cure patients with otherwise fatal leukemias and lymphomas. However, the benefits of aHSCT are limited by graft-versus-host disease (GVHD). Minnelide, a water-soluble analog of triptolide, has demonstrated potent antiinflammatory and antitumor activity in several preclinical models and has proven both safe and efficacious in clinical trials for advanced gastrointestinal malignancies. Here, we tested the effectiveness of Minnelide in preventing acute GVHD as compared with posttransplant cyclophosphamide (PTCy). Strikingly, we found Minnelide improved survival, weight loss, and clinical scores in an MHC-mismatched model of aHSCT. These benefits were also apparent in minor MHC-matched aHSCT and xenogeneic HSCT models. Minnelide was comparable to PTCy in terms of survival, GVHD clinical score, and colonic length. Notably, in addition to decreased donor T cell infiltration early after aHSCT, several regulatory cell populations, including Tregs, ILC2s, and myeloid-derived stem cells in the colon were increased, which together may account for Minnelide's GVHD suppression after aHSCT. Importantly, Minnelide's GVHD prevention was accompanied by preservation of graft-versus-tumor activity. As Minnelide possesses anti-acute myeloid leukemia (anti-AML) activity and is being applied in clinical trials, together with the present findings, we conclude that this compound might provide a new approach for patients with AML undergoing aHSCT.


Subject(s)
Diterpenes , Epoxy Compounds , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Phenanthrenes , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Animals , Mice , Hematopoietic Stem Cell Transplantation/methods , Diterpenes/pharmacology , Diterpenes/therapeutic use , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Humans , Transplantation, Homologous , Female , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Disease Models, Animal , Graft vs Leukemia Effect/drug effects , Mice, Inbred C57BL , Male
2.
Blood Adv ; 8(5): 1105-1115, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38091578

ABSTRACT

ABSTRACT: Allogeneic hematopoietic cell transplantation (HCT) is a curative therapy for hematological malignancies for which graft-versus-host disease (GVHD) remains a major complication. The use of donor T-regulatory cells (Tregs) to prevent GVHD appears promising, including in our previous evaluation of an engineered graft product (T-reg graft) consisting of the timed, sequential infusion of CD34+ hematopoietic stem cells and high-purity Tregs followed by conventional T cells. However, whether immunosuppressive prophylaxis can be removed from this protocol remains unclear. We report the results of the first stage of an open-label single-center phase 2 study (NCT01660607) investigating T-reg graft in myeloablative HCT of HLA-matched and 9/10-matched recipients. Twenty-four patients were randomized to receive T-reg graft alone (n = 12) or T-reg graft plus single-agent GVHD prophylaxis (n = 12) to determine whether T-reg graft alone was noninferior in preventing acute GVHD. All patients developed full-donor myeloid chimerism. Patients with T-reg graft alone vs with prophylaxis had incidences of grade 3 to 4 acute GVHD of 58% vs 8% (P = .005) and grade 3 to 4 of 17% vs 0% (P = .149), respectively. The incidence of moderate-to-severe chronic GVHD was 28% in the T-reg graft alone arm vs 0% with prophylaxis (P = .056). Among patients with T-reg graft and prophylaxis, CD4+ T-cell-to-Treg ratios were reduced after transplantation, gene expression profiles showed reduced CD4+ proliferation, and the achievement of full-donor T-cell chimerism was delayed. This study indicates that T-reg graft with single-agent tacrolimus is preferred over T-reg graft alone for the prevention of acute GVHD. This trial was registered at www.clinicaltrials.gov as #NCT01660607.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Tacrolimus/therapeutic use , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/pathology , Immunosuppressive Agents/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Tissue Donors
3.
Transplant Cell Ther ; 29(5): 341.e1-341.e9, 2023 05.
Article in English | MEDLINE | ID: mdl-36804930

ABSTRACT

The present studies examined experimental transplant outcomes using mobilized peripheral blood from mice and humans together with FoxP3+Treg cells. Donor mice were treated with filgrastim and / or plerixafor and their peripheral blood (PB) displayed significant elevations in hematopoietic stem and progenitor populations. Some of these PB donors were concurrently administered a Treg expansion strategy consisting of a TL1A-Ig fusion protein low dose rIL-2. A significant increase (4-5x) in the frequency Tregs occurred during mobilization. C3H.SW PB was collected from mobilized and Treg unexpanded ("TrUM") or mobilized and Treg expanded ("TrEM") donors and transplanted into MHC-matched B6 (H2b) recipients. Recipients of TrEM, exhibited significantly reduced weight loss and clinical GVHD scores compared to recipients of TrUM. Notably, recipients of TrEM exhibited comparable GVL activity to TrUM recipients against leukemia levels. Next, huTregs (CD4+CD25+CD127lo) from a healthy human PB mobilized donor were expanded ex-vivo prior to transplant into NSG/ NOD-scid IL2Rgammanull mice. We found that treatment with ex-vivo expanded huTregs resulted in significant reduction of lethality and clinical xGVHD scores. Notably, post-transplant, PB huTregs levels remained elevated and the frequency of huCD4+Tconv and CD8+ cells was diminished supporting the improved xGVHD outcomes. These findings demonstrated that the use of mPB containing elevated Treg levels significantly reduced GVHD following "MUD" and MHC-mismatched mouse HSCT without loss of GVL activity. Moreover, utilizing ex-vivo expanded huTregs from a mobilized PB donor and added back to donor PB ameliorated xGVHD. In total, these studies support the notion that in vivo or ex-vivo manipulation of donor Tregs together with mobilized peripheral blood could provide therapeutic approaches to improve aHSCT outcomes.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Heterocyclic Compounds , Humans , Animals , Mice , T-Lymphocytes, Regulatory/transplantation , Blood Donors , Hematopoietic Stem Cell Mobilization , Mice, Inbred C3H , Mice, Inbred NOD , Hematopoietic Stem Cell Transplantation/methods , Graft vs Host Disease/prevention & control , Proteins
4.
Front Immunol ; 13: 960329, 2022.
Article in English | MEDLINE | ID: mdl-36420263

ABSTRACT

Graft-versus-host disease (GvHD) is a major complication after allogeneic hematopoietic cell transplantation (HCT). Current strategies to prevent GvHD with immunosuppressive drugs carry significant morbidity and may affect the graft-versus-tumor (GVT) effect. Inflammatory bowel disease (IBD) is an intestinal inflammatory condition that affects more than 2 million people in the United States. Current strategies to prevent colitis with immunosuppressive drugs carry significant morbidity. Recently, Repulsive Guidance Molecule b (RGMb) has been identified as part of a signaling hub with neogenin and BMP receptors in mice and humans. In addition, RGMb binds BMP-2/4 in mice and humans as well as PD-L2 in mice. RGMb is expressed in the gut epithelium and by antigen presenting cells, and we found significantly increased expression in mouse small intestine after total body irradiation HCT conditioning. We hypothesized that RGMb may play a role in GvHD and IBD pathogenesis by contributing to mucosal inflammation. Using major-mismatched HCT mouse models, treatment with an anti-RGMb monoclonal antibody (mAb) that blocks the interaction with BMP-2/4 and neogenin prevented GvHD and improved survival compared to isotype control (75% versus 30% survival at 60 days after transplantation). The GVT effect was retained in tumor models. Using an inflammatory bowel disease dextran sulfate sodium model, treatment with anti-RGMb blocking monoclonal antibody but not isotype control prevented colitis and improved survival compared to control (73% versus 33% at 21 days after treatment) restoring gut homeostasis. Anti-RGMb mAb (9D1) treatment decreased IFN-γ and significantly increased IL-5 and IL-10 in the gut of the treated mice compared to the isotype control treated mice.


Subject(s)
Colitis , Graft vs Host Disease , Inflammatory Bowel Diseases , Humans , Mice , Animals , Inflammation , Inflammatory Bowel Diseases/therapy , Colitis/chemically induced , Immunosuppressive Agents , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cell Adhesion Molecules, Neuronal
5.
Front Immunol ; 12: 636789, 2021.
Article in English | MEDLINE | ID: mdl-33737937

ABSTRACT

Corneal transplantation (CT) is the most frequent type of solid organ transplant (SOT) performed worldwide. Unfortunately, immunological rejection is the primary cause of graft failure for CT and therefore advances in immune regulation to induce tolerance remains an unmet medical need. Recently, our work and others in pre-clinical studies found that cyclophosphamide (Cy) administered after ("post-transplant," PTCy) hematopoietic stem cell transplantation (HSCT), i.e., liquid transplants is effective for graft vs. host disease prophylaxis and enhances overall survival. Importantly, within the past 10 years, PTCy has been widely adopted for clinical HSCT and the results at many centers have been extremely encouraging. The present studies found that Cy can be effectively employed to prolong the survival of SOT, specifically mouse corneal allografts. The results demonstrated that the timing of PTCy administration is critical for these CT and distinct from the kinetics employed following allogeneic HSCT. PTCy was observed to interfere with neovascularization, a process critically associated with immune rejection of corneal tissue that ensues following the loss of ocular "immune privilege." PTCy has the potential to delete or directly suppress allo-reactive T cells and treatment here was shown to diminish T cell rejection responses. These PTCy doses were observed to spare significant levels of CD4+ FoxP3+ (Tregs) which were found to be functional and could readily receive stimulating signals leading to their in vivo expansion via TNFRSF25 and CD25 agonists. In total, we posit future studies can take advantage of Cy based platforms to generate combinatorial strategies for long-term tolerance induction.


Subject(s)
Corneal Transplantation , Cyclophosphamide/therapeutic use , Graft Rejection/prevention & control , Postoperative Complications/prevention & control , Allografts/immunology , Animals , Cells, Cultured , Forkhead Transcription Factors/genetics , Graft Rejection/etiology , Humans , Immune Tolerance , Interleukin-2 Receptor alpha Subunit/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Tumor Necrosis Factor, Member 25/metabolism , Signal Transduction
6.
Blood ; 137(14): 1871-1878, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33619537

ABSTRACT

Stimulator of interferon genes (STING) is an innate immune sensor of cytoplasmic dsDNA originating from microorganisms and host cells. STING plays an important role in the regulation of murine graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and may be similarly activated during other transplantation modalities. In this review, we discuss STING in allo-HSCT and its prospective involvement in autologous HSCT (auto-HSCT) and solid organ transplantation (SOT), highlighting its unique role in nonhematopoietic, hematopoietic, and malignant cell types.


Subject(s)
Hematopoietic Stem Cell Transplantation , Membrane Proteins/immunology , Organ Transplantation , Animals , Graft vs Host Disease/immunology , Graft vs Host Disease/metabolism , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/methods , Humans , Membrane Proteins/metabolism , Organ Transplantation/methods , Signal Transduction , Transplantation, Homologous/methods
7.
Sci Transl Med ; 12(552)2020 07 15.
Article in English | MEDLINE | ID: mdl-32669421

ABSTRACT

The stimulator of interferon genes (STING) pathway has been proposed as a key regulator of gastrointestinal homeostasis and inflammatory responses. Although STING reportedly protects against gut barrier damage and graft-versus-host disease (GVHD) after major histocompatibility complex (MHC)-mismatched allogeneic hematopoietic stem cell transplantation (aHSCT), its effect in clinically relevant MHC-matched aHSCT is unknown. Studies here demonstrate that STING signaling in nonhematopoietic cells promoted MHC-matched aHSCT-induced GVHD and that STING agonists increased type I interferon and MHC I expression in nonhematopoietic mouse intestinal organoid cultures. Moreover, mice expressing a human STING allele containing three single-nucleotide polymorphisms associated with decreased STING activity also developed reduced MHC-matched GVHD, demonstrating STING's potential clinical importance. STING-/- recipients experienced reduced GVHD with transplant of purified donor CD8+ T cells in both MHC-matched and MHC-mismatched models, reconciling the seemingly disparate results. Further examination revealed that STING deficiency reduced the activation of donor CD8+ T cells early after transplant and promoted recipient MHC class II+ antigen-presenting cell (APC) survival. Therefore, APC persistence in STING pathway absence may account for the increased GVHD mediated by CD4+ T cells in completely mismatched recipients. In total, our findings have important implications for regulating clinical GVHD by targeting STING early after aHSCT and demonstrate that an innate immune pathway has opposing effects on the outcome of aHSCT, depending on the donor/recipient MHC disparity.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Bone Marrow Transplantation , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Mice , T-Lymphocyte Subsets
8.
JCI Insight ; 3(20)2018 10 18.
Article in English | MEDLINE | ID: mdl-30333311

ABSTRACT

Posttransplant cyclophosphamide (PTCy) has been found to be effective in ameliorating acute graft-versus-host disease (GVHD) in patients following allogeneic hematopoietic stem cell transplantation (aHSCT). Adoptive transfer of high numbers of donor Tregs in experimental aHSCT has shown promise as a therapeutic modality for GVHD regulation. We recently described a strategy for in vivo Treg expansion targeting two receptors: TNFRSF25 and CD25. To date, there have been no direct comparisons between the use of PTCy and Tregs regarding outcome and immune reconstitution within identical groups of transplanted mice. Here, we assessed these two strategies and found both decreased clinical GVHD and improved survival long term. However, recipients transplanted with Treg-expanded donor cells (TrED) exhibited less weight loss early after HSCT. Additionally, TrED recipients demonstrated less thymic damage, significantly more recent thymic emigrants, and more rapid lymphoid engraftment. Three months after HSCT, PTCy-treated and TrED recipients showed tolerance to F1 skin allografts and comparable immune function. Overall, TrED was found superior to PTCy with regard to weight loss early after transplant and initial lymphoid engraftment. Based on these findings, we speculate that morbidity and mortality after transplant could be diminished following TrED transplant into aHSCT recipients, and, therefore, that TrED could provide a promising clinical strategy for GVHD prophylaxis.


Subject(s)
Adoptive Transfer/methods , Cyclophosphamide/administration & dosage , Graft vs Host Disease/prevention & control , Immune Reconstitution , T-Lymphocytes, Regulatory/transplantation , Animals , Cell Culture Techniques , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Graft vs Host Disease/immunology , Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Mice , Survival Analysis , T-Lymphocytes, Regulatory/immunology , Tissue Donors , Transplantation, Homologous/adverse effects , Treatment Outcome
9.
Biol Blood Marrow Transplant ; 24(9): 1788-1794, 2018 09.
Article in English | MEDLINE | ID: mdl-29751114

ABSTRACT

Regulatory T cells (Tregs) are essential for the maintenance of tolerance and immune homeostasis. In allogeneic hematopoietic stem cell transplantation (aHSCT), transfer of appropriate Treg numbers is a promising therapy for the prevention of graft-versus-host disease (GVHD). We have recently reported a novel approach that induces the marked expansion and selective activation of Tregs in vivo by targeting tumor necrosis factor receptor superfamily 25 (TNFRSF25) and CD25. A potential advance to promote clinical application of Tregs to ameliorate GVHD and other disorders would be the generation of more potent Treg populations. Here we wanted to determine if very low doses of Tregs generated using the "2-pathway" stimulation protocol via TL1A-Ig fusion protein and low-dose IL-2 (targeting TNFRSF25 and CD25, respectively) could be used to regulate preclinical GVHD. Analysis of such 2-pathway expanded Tregs identified higher levels of activation and functional molecules (CD103, ICOS-1, Nrp-1, CD39, CD73, il-10, and tgfb1) versus unexpanded Tregs. Additionally, in vitro assessment of 2-pathway stimulated Tregs indicated enhanced suppressor activity. Notably, transplant of extremely low numbers of these Tregs (1:6 expanded Tregs/conventional T cells) suppressed GVHD after an MHC-mismatched aHSCT. Overall, these results demonstrate that 2-pathway stimulated CD4+ FoxP3+ Tregs were quantitatively and qualitatively more functionally effective than unexpanded Tregs. In total, the findings in this study support the notion that such 2-pathway stimulated Tregs may be useful for prevention of GVHD and ultimately promote more widespread application of aHSCT in the clinic.


Subject(s)
CD4 Antigens/metabolism , Forkhead Transcription Factors/metabolism , Graft vs Host Disease/genetics , Immune Tolerance/immunology , Animals , Female , Graft vs Host Disease/metabolism , Graft vs Host Disease/pathology , Humans , Interleukin-2/metabolism , Mice , Mice, Inbred BALB C , T-Lymphocytes, Regulatory/immunology , Tissue Donors
10.
Front Immunol ; 9: 3104, 2018.
Article in English | MEDLINE | ID: mdl-30733722

ABSTRACT

A recent approach for limiting production of pro-inflammatory cytokines has been to target bromodomain and extra-terminal (BET) proteins. These epigenetic readers of histone acetylation regulate transcription of genes involved in inflammation, cardiovascular disease, and cancer. Development of BET inhibitors (BETi) has generated enormous interest for their therapeutic potential. Because inflammatory signals and donor T cells promote graft-versus-host disease (GVHD), regulating both pathways could be effective to abrogate this disorder. The objective of the present study was to identify a BETi which did not interfere in vivo with CD4+FoxP3+ regulatory T cell (Treg) expansion and function to utilize together with Tregs following allogeneic hematopoietic stem cell transplantation (aHSCT) to ameliorate GVHD. We have reported that Tregs can be markedly expanded and selectively activated with increased functional capacity by targeting TNFRSF25 and CD25 with TL1A-Ig and low dose IL-2, respectively. Here, mice were treated over 7 days (TL1A-Ig + IL-2) together with BETi. We found that the BETi EP11313 did not decrease frequency/numbers or phenotype of expanded Tregs as well as effector molecules, such as IL-10 and TGF-ß. However, BETi JQ1 interfered with Treg expansion and altered subset distribution and phenotype. Notably, in Treg expanded mice, EP11313 diminished tnfa and ifng but not il-2 RNA levels. Remarkably, Treg pSTAT5 expression was not affected by EP11313 supporting the notion that Treg IL-2 signaling remained intact. MHC-mismatched aHSCT (B6 → BALB/c) was performed using in vivo expanded donor Tregs with or without EP11313 short-term treatment in the recipient. Early post-transplant, improvement in the splenic and LN CD4/CD8 ratio along with fewer effector cells and high Treg levels in aHSCT recipients treated with expanded Tregs + EP11313 was detected. Interestingly, this group exhibited a significant diminution of GVHD clinical score with less skin and ocular involvement. Finally, using low numbers of highly purified expanded Tregs, improved clinical GVHD scores were observed in EP11313 treated recipients. In total, we conclude that use of this novel combinatorial strategy can suppress pre-clinical GVHD and posit, in vivo EP11313 treatment might be useful combined with Treg expansion therapy for treatment of diseases involving inflammatory responses.


Subject(s)
Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Immunosuppressive Agents/pharmacology , Immunotherapy, Adoptive/methods , T-Lymphocytes, Regulatory/transplantation , Animals , Azepines/pharmacology , Azepines/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Graft vs Host Disease/immunology , Humans , Immunosuppressive Agents/therapeutic use , Interleukin-2/immunology , Interleukin-2/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Domains/drug effects , Proteins/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transplantation, Homologous/adverse effects , Treatment Outcome , Triazoles/pharmacology , Triazoles/therapeutic use
11.
Biol Blood Marrow Transplant ; 23(5): 757-766, 2017 May.
Article in English | MEDLINE | ID: mdl-28219835

ABSTRACT

Regulatory T cells (Tregs) are critical for self-tolerance. Although adoptive transfer of expanded Tregs limits graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation (HSCT), ex vivo generation of large numbers of functional Tregs remains difficult. Here, we demonstrate that in vivo targeting of the TNF superfamily receptor TNFRSF25 using the TL1A-Ig fusion protein, along with IL-2, resulted in transient but massive Treg expansion in donor mice, which peaked within days and was nontoxic. Tregs increased in multiple compartments, including blood, lymph nodes, spleen, and colon (GVHD target tissue). Tregs did not expand in bone marrow, a critical site for graft-versus-malignancy responses. Adoptive transfer of in vivo-expanded Tregs in the setting of MHC-mismatched or MHC-matched allogeneic HSCT significantly ameliorated GVHD. Critically, transplantation of Treg-expanded donor cells facilitated transplant tolerance without GVHD, with complete sparing of graft-versus-malignancy. This approach may prove valuable as a therapeutic strategy promoting transplantation tolerance.


Subject(s)
Adoptive Transfer/methods , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation/methods , T-Lymphocytes, Regulatory/transplantation , Animals , Cell Proliferation/drug effects , Female , Graft vs Host Disease/drug therapy , Immunoglobulins/pharmacology , Interleukin-2/pharmacology , Mice , Mice, Inbred BALB C , Self Tolerance , T-Lymphocytes, Regulatory/cytology , Tumor Necrosis Factor Ligand Superfamily Member 15/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...