Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(7): 3407-3413, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38269470

ABSTRACT

Morpholine motifs have been used extensively as targeting moieties for lysosomes, primarily in fluorescence imaging agents. Traditionally these imaging agents are based on organic molecules which have several shortcomings including small Stokes shifts, short emission lifetimes, and susceptibility to photobleaching. To explore alternative lysosome targeting imaging agents we have used a rhenium based phosphorescent platform which has been previously demonstrated to have an improved Stokes shift, a long lifetime emission, and is highly photostable. Rhenium complexes containing morpholine substituted ligands were designed to accumulate in acidic compartments. Two of the three complexes prepared exhibited bright emission in cells, when incubated at low concentrations (20 µM) and were non-toxic at concentrations as high as 100 µM, making them suitable for live cell imaging. We show that the rhenium complexes are amenable to chemical modification and that the morpholine targeted derivatives can be used for live cell confocal fluorescence imaging of endosomes-lysosomes.


Subject(s)
Rhenium , Rhenium/chemistry , Fluorescent Dyes/chemistry , Cell Line, Tumor , Lysosomes , Morpholines
2.
Inorg Chem ; 60(14): 10173-10185, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34210122

ABSTRACT

Luminescent metal complexes are a valuable platform for the generation of cell imaging agents. However, many metal complexes are cationic, a factor that can dominate the intracellular accumulation to specific organelles. Neutral Re(I) complexes offer a more attractive platform for the development of bioconjugated imaging agents, where charge cannot influence their intracellular distribution. Herein, we report the synthesis of a neutral complex (ReAlkyne), which was used as a platform for the generation of four carbohydrate-conjugated imaging agents via Cu(I)-catalyzed azide-alkyne cycloaddition. A comprehensive evaluation of the physical and optical properties of each complex is provided, together with a determination of their utility as live cell imaging agents in H9c2 cardiomyoblasts. Unlike their cationic counterparts, many of which localize within mitochondria, these neutral complexes have localized within the endosomal/lysosomal network, a result consistent with examples of dinuclear carbohydrate-appended neutral Re(I) complexes that have been reported. This further demonstrates the utility of these neutral Re(I) complex imaging platforms as viable imaging platforms for the development of bioconjugated cell imaging agents.


Subject(s)
Coordination Complexes/chemistry , Intracellular Space/metabolism , Molecular Imaging/methods , Rhenium/chemistry , Azides/chemistry , Cell Line , Myocytes, Cardiac/cytology
3.
J Biophotonics ; 13(3): e201960085, 2020 03.
Article in English | MEDLINE | ID: mdl-31793184

ABSTRACT

The primary metabolic pathway required to produce ATP differs as a result of tissue type, developmental stage and substrate availability. We utilized molecular and histological techniques to define the metabolic status in foetal and adult, adipose and skeletal muscle tissues. Redox ratios of these tissues were also determined optically by two-photon microscopy. Adult perirenal adipose tissue had a higher optical redox ratio than fetal perirenal adipose tissue, which aligned with glycolysis being used for ATP production; whereas adult skeletal muscle had a lower optical redox ratio than fetal skeletal muscle, which aligned with oxygen demanding oxidative phosphorylation activity being utilized for ATP production. We have compared traditional molecular and microscopy techniques of metabolic tissue characterization with optical redox ratios to provide a more comprehensive report on the dynamics of tissue metabolism.


Subject(s)
Adipose Tissue , Muscle, Skeletal , Adipose Tissue/metabolism , Animals , Fetus , Glycolysis , Muscle, Skeletal/metabolism , Oxidative Phosphorylation , Sheep
4.
ACS Appl Bio Mater ; 2(9): 3934-3941, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-35021326

ABSTRACT

Microbial pathogens use hydrolases as a virulence strategy to spread disease through tissues and colonize medical device surfaces; however, visualizing this process is a technically challenging problem. To better understand the role of secreted fungal hydrolases and their role in Candida albicans virulence, we developed an in situ model system using luminescent Re(I) and Ir(III) containing probe molecules embedded in a biodegradable (poly(lactic-co-glycolic acid), PLGA) polymer and tracked their uptake using epifluorescent imaging. We found that secretion of esterases can explain how physically embedded probes are acquired by fungal cells through the degradation of PLGA since embedded probes could not be liberated from nonbiodegradable polystyrene (PS). It was important to verify that epifluorescent imaging captured the fate of probe molecules rather than naturally occurring fungal autofluorescence. For this, we exploited the intense luminescent signals and long spectral relaxation times of the Re and Ir containing probe molecules, resolved in time using a gated imaging system. Results provide a visual demonstration of a key virulence trait of C. albicans: the use of hydrolases as a means to degrade materials and acquire hydrolysis products during fungal growth and hyphal development. These results help to explain the role of nonspecific hydrolases using a degradable material that is relevant to the study of fungal pathogenesis on biotic (tissues) surfaces. Additionally, understanding how fungal pathogens condition surfaces by using nonspecific hydrolases is important to the study of fungal attachment on abiotic surfaces, the first step in biofilm formation on medical devices.

5.
Oncotarget ; 9(85): 35541-35552, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30473749

ABSTRACT

Lipids are important cellular components which can be significantly altered in a range of disease states including prostate cancer. Here, a unique systematic approach has been used to define lipid profiles of prostate cancer cell lines, using quantitative mass spectrometry (LC-ESI-MS/MS), FTIR spectroscopy and fluorescent microscopy. All three approaches identified significant difference in the lipid profiles of the three prostate cancer cell lines (DU145, LNCaP and 22RV1) and one non-malignant cell line (PNT1a). Specific lipid classes and species, such as phospholipids (e.g., phosphatidylethanolamine 18:1/16:0 and 18:1/18:1) and cholesteryl esters, detected by LC-ESI-MS/MS, allowed statistical separation of all four prostate cell lines. Lipid mapping by FTIR revealed that variations in these lipid classes could also be detected at a single cell level, however further investigation into this approach would be needed to generate large enough data sets for quantitation. Visualisation by fluorescence microscopy showed striking variations that could be observed in lipid staining patterns between cell lines allowing visual separation of cell lines. In particular, polar lipid staining by a fluorescent marker was observed to increase significantly in prostate cancer lines cells, when compared to PNT1a cells, which was consistent with lipid quantitation by LC-ESI-MS/MS and FTIR spectroscopy. Thus, multiple technologies can be employed to either quantify or visualise changes in lipid composition, and moreover specific lipid profiles could be used to detect and phenotype prostate cancer cells.

6.
Eur J Med Chem ; 160: 9-22, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30316060

ABSTRACT

The design, synthesis and evaluation of a small series of potent amphiphilic norbornane antibacterial agents has been performed (compound 10 MIC = 0.25 µg/mL against MRSA). Molecular modelling indicates rapid aggregation of this class of antibacterial agent prior to membrane association and insertion. Two fluorescent analogues (compound 29 with 4-amino-naphthalimide and 34 with 4-nitrobenz-2-oxa-1,3-diazole fluorophores) with good activity (MIC = 0.5 µg/mL against MRSA) were also constructed and confocal microscopy studies indicate that the primary site of interaction for this family of compounds is the bacterial membrane.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Norbornanes/pharmacology , Peptidomimetics/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Cell Membrane/drug effects , Dose-Response Relationship, Drug , Methicillin-Resistant Staphylococcus aureus/cytology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Norbornanes/chemistry , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Structure-Activity Relationship
7.
Sci Rep ; 8(1): 8191, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844412

ABSTRACT

Mitochondrial morphology is important for the function of this critical organelle and, accordingly, altered mitochondrial structure is exhibited in many pathologies. Imaging of mitochondria can therefore provide important information about disease presence and progression. However, mitochondrial imaging is currently limited by the availability of agents that have the capacity to image mitochondrial morphology in both live and fixed samples. This can be particularly problematic in clinical studies or large, multi-centre cohort studies, where tissue archiving by fixation is often more practical. We previously reported the synthesis of an iridium coordination complex [Ir(ppy)2(MeTzPyPhCN)]+; where ppy is a cyclometalated 2-phenylpyridine and TzPyPhCN is the 5-(5-(4-cyanophen-1-yl)pyrid-2-yl)tetrazolate ligand; and showed that this complex (herein referred to as IraZolve-Mito) has a high specificity for mitochondria in live cells. Here we demonstrate that IraZolve-Mito can also effectively stain mitochondria in both live and fixed tissue samples. The staining protocol proposed is versatile, providing a universal procedure for cell biologists and pathologists to visualise mitochondria.


Subject(s)
Coordination Complexes/analysis , Iridium/analysis , Luminescent Agents/analysis , Mitochondria/ultrastructure , Optical Imaging/methods , Animals , Cell Line , Cell Survival , Female , Histocytological Preparation Techniques/methods , Luminescence , Microscopy, Confocal/methods , Rats , Sheep , Tissue Fixation/methods
8.
J Biophotonics ; 11(1)2018 01.
Article in English | MEDLINE | ID: mdl-28464439

ABSTRACT

Coronary heart disease is one of the largest causes of death worldwide, making this a significant health care issue. A critical problem for the adult human heart is that it does not undergo effective repair in response to damage, leaving patients with a poor prognosis. Unlike the adult, fetal hearts have the ability to repair after myocardial damage. Using two-photon microscopy, we have visualised the morphological and metabolic changes following myocardial infarction in sheep fetuses, to characterise response to cardiac injury in a mammalian model. Following myocardial infarction, fetal hearts showed no significant increase in collagen deposition in the region of the infarction, when compared to either the surrounding tissue or shams. In contrast, metabolic activity (i. e. NAD(P)H and FAD) was significantly reduced in the region of myocardial infarction, when compared to either the surrounding tissue or sham hearts. For comparison, we also imaged two hearts from preadolescent sheep (sham and myocardial infarction) and showed highly ordered collagen deposition with decreased metabolic activity within the infarcted area. Therefore, two-photon imaging had the capacity to image both morphological and metabolic changes in response to myocardial infarction and showed differences in the response with age. Picture: Two-photon imaging of myocardial infarction (b and d) enabled the visualisation of increased collagen (blue; Em=431 nm) and changes in other tissue autofluorescence (green; Em=489-606 nm) in fetal (a and b) and preadolescent (c and d) hearts, compared to shams (a and c). The excitation wavelength was 840 nm. Scale bars: 10 µm.


Subject(s)
Fetal Heart/diagnostic imaging , Microscopy, Fluorescence, Multiphoton , Myocardial Infarction/diagnostic imaging , Animals , Female , Fetal Heart/metabolism , Flavin-Adenine Dinucleotide/metabolism , Myocardial Infarction/metabolism , NADP/metabolism , Pregnancy , Sheep
9.
J Biophotonics ; 11(3)2018 03.
Article in English | MEDLINE | ID: mdl-29057578

ABSTRACT

The heart has high metabolic demand to maintain function. The primary source of energy supply to support correct contractile muscle function differs between a fetus and an adult. In fetal life, ATP is primarily generated by glycolysis and lactate oxidation, whereas following birth, there is a shift towards a reliance on mitochondrial metabolism and fatty acid oxidation. This change in metabolic status is an adaptation to different fuel availability, oxygenation and growth patterns. In this study, we have employed 2-photon excitation fluorescence microscopy to define the relationship between two critical metabolic cofactors nicotinamide adenine dinucleotide(P)H and flavin adenine dinucleotide, effectively utilizing a redox ratio to differentiate between the metabolic status in fetal (proliferative) and adult (quiescent/hypertrophic) hearts. Two-photon imaging was also used to visually confirm the known increase in collagen deposition in the adult heart. The changes observed were consistent with a hypertrophic growth profile and greater availability of fatty acids in the adult heart, compared to the proliferative fetal heart. Two-photon excitation fluorescence microscopy is therefore a convenient imaging technology that enables the monitoring of striated muscle architecture and the metabolic status of heart tissue. This imaging technology can potentially be employed to visualize cardiac and other muscle pathologies.


Subject(s)
Collagen/metabolism , Microscopy, Fluorescence, Multiphoton , Myocardium/metabolism , Animals , Female , Flavin-Adenine Dinucleotide/metabolism , NAD/metabolism , Oxidation-Reduction , Sheep
10.
J Inorg Biochem ; 178: 32-42, 2018 01.
Article in English | MEDLINE | ID: mdl-29035716

ABSTRACT

In this work we have developed a series of highly emissive europium(III) and terbium(III) complexes tethered to either folic acid (FA) or methotrexate (MTX), with the aim of developing visual probes that enable the imaging of folate receptors in cancer cells. The synthesis, photophysical properties and cellular behaviour are reported for four new lanthanide Ln(III) complexes, where either FA or MTX are tethered to 1,4,7-tris(carbonylmethyl)-10-(4'-quinolineacetic acid, (7'-acetamido)-1',2'-dihydro-2'-oxo)-1,4,7,10-tetraazacyclododecane Ln(III) complex, and Ln(III)=Eu(III) or Tb(III); herein referred to as Eu-FA, Eu-MTX, Tb-FA or Tb-MTX. All four complexes were found to be sensitive to the presence of the folate receptor in a range of cell lines. The MTX conjugates showed different cellular specificity in an oral adenosquamous carcinoma cell line (CAL-27) compared with the analogous FA conjugates. This suggests that it is viable to explore differences in folate receptors using folate vs. anti-folate probes, with labels that have different emissive properties (e.g. Eu-FA vs. Tb-MTX). The MTX complexes were found to be the most cytotoxic, with Eu-MTX showing greater cytotoxicity than free MTX or the isostructural Tb-MTX. This suggested that there could be a synergistic effect on toxicity for the Eu(III) chelate and the MTX components of the complex.


Subject(s)
Coordination Complexes/chemical synthesis , Folic Acid/chemistry , Lanthanoid Series Elements/chemical synthesis , Methotrexate/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , HeLa Cells , Humans , Lanthanoid Series Elements/chemistry , Lanthanoid Series Elements/pharmacology , Luminescence , Methotrexate/pharmacology , Molecular Structure
11.
Chemistry ; 23(62): 15666-15679, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28782852

ABSTRACT

A family of five neutral cyclometalated iridium(III) tetrazolato complexes and their methylated cationic analogues have been synthesised and characterised. The complexes are distinguished by variations of the substituents or degree of π conjugation on either the phenylpyridine or tetrazolato ligands. The photophysical properties of these species have been evaluated in organic and aqueous media, revealing predominantly a solvatochromic emission originating from mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. These emissions are characterised by typically long excited-state lifetimes (∼hundreds of ns), and quantum yields around 5-10 % in aqueous media. Methylation of the complexes caused a systematic red-shift of the emission profiles. The behaviour and the effects of the different complexes were then examined in cells. The neutral species localised mostly in the endoplasmic reticulum and lipid droplets, whereas the majority of the cationic complexes localised in the mitochondria. The amount of complexes found within cells does not depend on lipophilicity, which potentially suggests diverse uptake mechanisms. Methylated analogues were found to be more cytotoxic compared to the neutral species, a behaviour that might to be linked to a combination of uptake and intracellular localisation.


Subject(s)
Coordination Complexes/chemistry , Iridium/chemistry , Tetrazoles/chemistry , Animals , Cations/chemistry , Cell Line , Cell Survival/drug effects , Coordination Complexes/metabolism , Coordination Complexes/toxicity , Crystallography, X-Ray , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/metabolism , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Ligands , Light , Microscopy, Fluorescence , Molecular Conformation , Photolysis/radiation effects , Pyridines/chemistry , Rats
12.
J Proteome Res ; 16(5): 1976-1987, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28365999

ABSTRACT

The evolutionary conserved family of 14-3-3 proteins appears to have a role in integrating numerous intracellular pathways, including signal transduction, intracellular trafficking, and metabolism. However, little is known about how this interactive network might be affected by the direct abrogation of 14-3-3 function. The loss of Drosophila 14-3-3ε resulted in reduced survival of mutants during larval-to-adult transition, which is known to depend on an energy supply coming from the histolysis of fat body tissue. Here we report a differential proteomic analysis of larval fat body tissue at the onset of larval-to-adult transition, with the loss of 14-3-3ε resulting in the altered abundance of 16 proteins. These included proteins linked to protein biosynthesis, glycolysis, tricarboxylic acid cycle, and lipid metabolic pathways. The ecdysone receptor (EcR), which is responsible for initiating the larval-to-adult transition, colocalized with 14-3-3ε in wild-type fat body tissues. The altered protein abundance in 14-3-3ε mutant fat body tissue was associated with transcriptional deregulation of alcohol dehydrogenase, fat body protein 1, and lamin genes, which are known targets of the EcR. This study indicates that 14-3-3ε has a critical role in cellular metabolism involving either molecular crosstalk with the EcR or direct interaction with metabolic proteins.


Subject(s)
14-3-3 Proteins/metabolism , Drosophila/genetics , Metabolic Networks and Pathways/physiology , Proteome/analysis , Animals , Fat Body/chemistry , Gene Expression Regulation, Developmental , Larva/anatomy & histology , Life Cycle Stages , Proteomics/methods , Receptors, Steroid/metabolism
13.
PLoS One ; 11(8): e0161557, 2016.
Article in English | MEDLINE | ID: mdl-27551717

ABSTRACT

Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular compartments.


Subject(s)
Cell Physiological Phenomena , Lipid Metabolism , Lipids , Molecular Probes , Adipocytes , Adipose Tissue/metabolism , Amino Acids/metabolism , Animals , Autophagy , Biological Transport , Carbohydrate Metabolism , Drosophila , Lipid Droplets/metabolism , Lipids/chemistry , Metamorphosis, Biological , Mice , Spectrum Analysis, Raman , Staining and Labeling
14.
FEBS Lett ; 590(18): 3051-60, 2016 09.
Article in English | MEDLINE | ID: mdl-27543777

ABSTRACT

Live cell imaging can provide important information on cellular dynamics; however, the full utilisation of this technology has been hampered by the limitations of imaging reagents. Metal-based complexes have the potential to overcome many of the issues common to many current imaging agents. The rhenium (I)-based complex fac-[Re(CO)3 (1,10-phenanthroline)(4-pyridyltetrazolate)], herein referred to as ReZolve-ER(™) , shows promise as a live cell imaging agent with rapid cell uptake, low cytotoxicity, resistance to photobleaching and compatibility with multicolour imaging. ReZolve-ER(™) localised to the nuclear membrane/endoplasmic reticulum (ER) and allowed the detection of exocytotic events at the plasma membrane. Thus, we present a new imaging agent for monitoring live cell events in real time, which is ideal for imaging either short- or long-time courses.


Subject(s)
Cell Membrane/metabolism , Cell Nucleus/metabolism , Endoplasmic Reticulum/metabolism , Molecular Imaging/methods , Active Transport, Cell Nucleus , Animals , Cell Line , Cell Line, Tumor , Cricetinae , Cricetulus , Exocytosis , Fluorescent Dyes , Humans , Organometallic Compounds , Phenanthrolines , Rhenium
15.
J Vector Ecol ; 37(1): 110-6, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22548544

ABSTRACT

Adult mosquito traps are commonly used in biosecurity surveillance for the detection of exotic mosquito incursions or for the demonstration of elimination. However, traps are typically deployed without knowledge of how many are required for detecting differing numbers of the target species. The aim of this study was to determine the sensitivity (i.e., detection probability) provided by carbon dioxide-baited EVS traps for adult female Australian southern saltmarsh mosquitoes, Aedes camptorhynchus, a recent biosecurity problem for New Zealand. A mark-release-recapture study of three concurrently released cohorts (sized 56, 296, and 960), recaptured over four days with a matrix of 20 traps, was conducted in Australia. The detection probability for different numbers of traps and cohorts of different sizes was determined by random sampling of recapture data. Detection probability ranged from approximately 0.3 for a single trap detecting a cohort of 56 mosquitoes to 1.0 (certainty of detection) when seven or more traps were used. For detection of adult Ae. camptorhynchus around a known source, a matrix of traps provides a strong probability of detection. Conversely, the use of single traps deployed over very large areas to detect mosquitoes of unknown entry pathway is unlikely to be successful. These findings have implications for the design of mosquito surveillance for biosecurity.


Subject(s)
Aedes/physiology , Mosquito Control , Animals , Australia , Culicidae/physiology
16.
PLoS Negl Trop Dis ; 4(12): e922, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21200424

ABSTRACT

BACKGROUND: Dengue is the world's most important mosquito-borne viral illness. Successful future management of this disease requires an understanding of the population dynamics of the vector, especially in the context of changing climates. Our capacity to predict future dynamics is reflected in our ability to explain the significant historical changes in the distribution and abundance of the disease and its vector. METHODOLOGY/PRINCIPAL FINDINGS: Here we combine daily weather records with simulation modelling techniques to explain vector (Aedes aegypti (L.)) persistence within its current and historic ranges in Australia. We show that, in regions where dengue presently occurs in Australia (the Wet Tropics region of Far North Queensland), conditions are persistently suitable for year-round adult Ae. aegypti activity and oviposition. In the historic range, however, the vector is vulnerable to periodic extinction due to the combined influence of adult activity constraints and stochastic loss of suitable oviposition sites. CONCLUSIONS/SIGNIFICANCE: These results, together with changes in water-storage behaviour by humans, can explain the observed historical range contraction of the disease vector. For these reasons, future eradication of dengue in wet tropical regions will be extremely difficult through classical mosquito control methods alone. However, control of Ae. aegypti in sub-tropical and temperate regions will be greatly facilitated by government policy regulating domestic water-storage. Exploitation of the natural vulnerabilities of dengue vectors (e.g., habitat specificity, climatic limitations) should be integrated with the emerging novel transgenic and symbiotic bacterial control techniques to develop future control and elimination strategies.


Subject(s)
Aedes/growth & development , Dengue/transmission , Disease Vectors , Zoonoses/transmission , Animals , Extinction, Biological , Population Dynamics , Queensland , Tropical Climate , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...