Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049159

ABSTRACT

Semiconducting SnSe, an analog of black phosphorus, recently attracted great scientific interest due to a disputed report of a large thermoelectric figure of merit, which has not been reproduced subsequently. Here we concentrate on the low-temperature ground state. To gain a better understanding of the system, we present magneto-transport properties in high-quality single crystals of as-grown, lightly doped SnSe down to liquid helium temperatures. We show that SnSe behaves as a p-type doped semiconductor in the vicinity of a metal-insulator transition. Electronic transport at the lowest temperatures is dominated by the hopping mechanism. Negative magnetoresistance at low fields is well described by antilocalization, while positive magnetoresistance at higher fields is consistent with the shrinkage of localized impurity wavefunctions. At higher temperatures, a dilute metallic regime is realized where elusive T2 and B2 resistivity dependence is observed, posing a challenge to theoretical comprehension of the underlying physical mechanism.

2.
J Phys Condens Matter ; 30(4): 045601, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29271357

ABSTRACT

The intermetallic semiconductor FeGa3 acquires itinerant ferromagnetism upon electron doping by a partial replacement of Ga with Ge. We studied the electron spin resonance (ESR) of high-quality single crystals of FeGa3-x Ge x for x from 0 up to 0.162 where ferromagnetic order is observed. For x = 0 we observed a well-defined ESR signal, indicating the presence of pre-formed magnetic moments in the semiconducting phase. Upon Ge doping the occurrence of itinerant magnetism clearly affects the ESR properties below ≈40 K, whereas at higher temperatures an ESR signal as seen in FeGa3 prevails independent on the Ge content. The present results show that the ESR of FeGa3-x Ge x is an appropriate and direct tool to investigate the evolution of 3d-based itinerant magnetism.

SELECTION OF CITATIONS
SEARCH DETAIL
...