Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 29(7): 1922-1938, 2023 04.
Article in English | MEDLINE | ID: mdl-36607160

ABSTRACT

Responses of the terrestrial biosphere to rapidly changing environmental conditions are a major source of uncertainty in climate projections. In an effort to reduce this uncertainty, a wide range of global change experiments have been conducted that mimic future conditions in terrestrial ecosystems, manipulating CO2 , temperature, and nutrient and water availability. Syntheses of results across experiments provide a more general sense of ecosystem responses to global change, and help to discern the influence of background conditions such as climate and vegetation type in determining global change responses. Several independent syntheses of published data have yielded distinct databases for specific objectives. Such parallel, uncoordinated initiatives carry the risk of producing redundant data collection efforts and have led to contrasting outcomes without clarifying the underlying reason for divergence. These problems could be avoided by creating a publicly available, updatable, curated database. Here, we report on a global effort to collect and curate 57,089 treatment responses across 3644 manipulation experiments at 1145 sites, simulating elevated CO2 , warming, nutrient addition, and precipitation changes. In the resulting Manipulation Experiments Synthesis Initiative (MESI) database, effects of experimental global change drivers on carbon and nutrient cycles are included, as well as ancillary data such as background climate, vegetation type, treatment magnitude, duration, and, unique to our database, measured soil properties. Our analysis of the database indicates that most experiments are short term (one or few growing seasons), conducted in the USA, Europe, or China, and that the most abundantly reported variable is aboveground biomass. We provide the most comprehensive multifactor global change database to date, enabling the research community to tackle open research questions, vital to global policymaking. The MESI database, freely accessible at doi.org/10.5281/zenodo.7153253, opens new avenues for model evaluation and synthesis-based understanding of how global change affects terrestrial biomes. We welcome contributions to the database on GitHub.


Subject(s)
Carbon Dioxide , Ecosystem , Biomass , Climate Change , Climate , Soil
2.
Environ Entomol ; 52(1): 56-66, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36377306

ABSTRACT

Hylurgus ligniperda (F.) and Hylastes ater (Paykull) are secondary bark beetles that have successfully spread beyond their native range, particularly into Pinus spp. plantations in the Southern Hemisphere. They feed on the phloem and cambial regions of highly stressed and recently dead Pinus spp. Here H. ligniperda and H. ater egg, larval, and pupal survival and development rates were modeled. Survival was variably influenced by temperatures depending on the life stage, but general trends were for H. ligniperda to tolerate warmer temperatures in comparison to H. ater. Nonlinear models showed 26, 29, and 34°C are the optimal temperature (maximum development rates) for the development of eggs, larvae, and pupae of H. ligniperda. In contrast, optimal temperature predictions were lower for H. ater, with estimates of 26, 22, and 23°C for the development of eggs, larvae, and pupae, respectively. H. ligniperda pre-imaginal stages were more tolerant to high temperatures, and H. ater pre-imaginal stages were more tolerant to low temperatures. Understanding the thermal requirements and limits for development for these two pests can assist in modeling emergence times, their current and potential species distribution and have potential phytosanitary applications.


Subject(s)
Coleoptera , Pinus , Weevils , Animals , Temperature , Plant Bark , Larva
3.
Front Plant Sci ; 13: 892826, 2022.
Article in English | MEDLINE | ID: mdl-35712598

ABSTRACT

Common myrtle (Myrtus communis L.) occurs in (semi-)arid areas of the Palearctic region where climate change, over-exploitation, and habitat destruction imperil its existence. The evergreen shrub is of great economic and ecological importance due to its pharmaceutical value, ornamental use, and its role in urban greening and habitat restoration initiatives. Under greenhouse conditions, we investigated the effect of soil inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on biomass allocation, water relations, and nutritional status of drought-stressed myrtle seedlings. Single and dual AMF (Funneliformis mosseae and Rhizophagus irregularis) and PGPR (Pseudomonas fluorescens and P. putida) soil inoculations were applied to myrtle seedlings growing under different soil water regimes (100, 60, and 30% of field capacity) for 6 months using a full factorial, completely randomized design. AMF and PGPR treatments, especially dual inoculations, alleviated negative drought effects on biomass and morpho-physiological traits, except for water-use efficiency, which peaked under severe drought conditions. Under the greatest soil water deficit, dual inoculations promoted leaf biomass (104%-108%), root biomass (56%-73%), mesophyll conductance (58%), and relative water content (1.4-fold) compared to non-inoculated controls. Particularly, dual AMF and PGPR inoculations stimulated nutrient dynamics in roots (N: 138%-151%, P: 176%-181%, K: 112%-114%, Ca: 124%-136%, and Mg: 130%-140%) and leaves (N: 101%-107%, P: 143%-149%, K: 83%-84%, Ca: 98%-107%, and Mg: 102%-106%). Our findings highlight soil inoculations with beneficial microbes as a cost-effective way to produce highly drought resistant seedling stock which is vital for restoring natural myrtle habitats and for future-proofing myrtle crop systems.

4.
Tree Physiol ; 41(11): 2034-2045, 2021 11 08.
Article in English | MEDLINE | ID: mdl-33960386

ABSTRACT

Seedlings of New Zealand's treeline-forming Fuscospora cliffortioides (Hook.f.) perform poorly beyond the established canopy, limiting treeline advance. To test the long-standing assumption that photoinhibition impairs regeneration in the subalpine belt of New Zealand's Southern Alps, we assessed photosystem II (PSII) performance of seedling-sized individuals and microclimate variation. We performed diurnal, non-invasive chlorophyll-a-fluorescence measurements on exposed and canopy-sheltered individuals at two sites in New Zealand's Southern Alps during summer and winter. Diurnal recordings of the effective (ΦPSII) and optimal (Fv/Fm) photosynthetic quantum yield were supplemented with light response curves and micro-temperature recordings. ΦPSII returned to near-optimal values around 0.8 after 30 min of shading, which rules out accumulative or long-term photoinhibition effects. The maximum electron transport rate derived from rapid light curves was significantly higher (+12%) in exposed compared with canopy-shaded individuals. Summer temperature fluctuated widely on the scree (-0.5 to 60.5 °C) and near seedlings (-2 to 26.5 °C). Our results revealed a remarkable level of light adaptation and contradict previous studies hinting at high light-induced photoinhibition as a treeline-limiting factor in the Southern Alps. By linking low ΦPSII on winter mornings, and large, sudden temperature drops in summer, we suspect that cold-induced photoinhibition might occur but the rapid recovery of ΦPSII seen across a wide temperature range makes lethal photo-oxidative damage rather unlikely. Given the demonstrably low summer frost tolerance of F. cliffortioides, cold-related damage resulting from frost events during the growing season or embolism induced by frost drought may offer more plausible explanations for the poor seedling establishment. Duration and frequency of these events could diminish with global warming, which may promote treeline advance.


Subject(s)
Chlorophyll , Seedlings , Chlorophyll A , New Zealand , Photosynthesis/physiology , Photosystem II Protein Complex , Seedlings/physiology
5.
Plant Dis ; 103(8): 1828-1834, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31184971

ABSTRACT

Red needle cast is a significant foliar disease of commercial stands of Pinus radiata caused by Phytophthora pluvialis in New Zealand. The effect of copper, applied as a foliar spray of cuprous oxide at a range of doses between 0 and 1.72 kg ha-1, was investigated in two controlled trials with potted plants and in an operational trial with mature P. radiata. In all trials, lesions formed on needles after artificial exposure to the infecting propagules (zoospores) of P. pluvialis were used to determine treatment efficacy, with the number and/or length of lesions as the dependent variable. Results across all trials indicated that cuprous oxide was highly effective at reducing infection of P. radiata with P. pluvialis. Application rates equivalent to ≥0.65 kg ha-1 significantly reduced infection levels relative to a control treatment, with foliar surface copper levels as low as 13 to 26 mg kg-1 of needle tissue preventing infection. Greater copper content was associated with a reduction in the proportion of needles with P. pluvialis lesions, with the probability of lesions developing decreasing approximately 1% for every 1 unit (in milligrams per kilogram) increase in copper content. Over a 90-day period, surface copper content declined to 30% of that originally applied, indicating an approximate period of treatment efficacy of 3 months. Our findings highlight the potential of cuprous oxide for the control of red needle cast in P. radiata stands. Further information about the optimal field dose, timing, and the frequency of foliar cuprous oxide application is key to prevent infection and also reduce the build up of inoculum during severe outbreaks of this pathogen.


Subject(s)
Copper , Phytophthora , Pinus , Plant Diseases , Antiparasitic Agents/pharmacology , Copper/analysis , Copper/pharmacology , New Zealand , Phytophthora/drug effects , Phytophthora/physiology , Pinus/parasitology , Plant Diseases/parasitology , Plant Diseases/prevention & control
6.
Front Plant Sci ; 8: 249, 2017.
Article in English | MEDLINE | ID: mdl-28326088

ABSTRACT

Understanding the effects of increasing temperature is central in explaining the effects of climate change on vegetation. Here, we investigate how warming affects vegetation regeneration and root biomass and if there is an interactive effect of warming with other environmental variables. We also examine if geothermal warming effects on vegetation regeneration and root biomass can be used in climate change experiments. Monitoring plots were arranged in a grid across the study area to cover a range of soil temperatures. The plots were cleared of vegetation and root-free ingrowth cores were installed to assess above and below-ground regeneration rates. Temperature sensors were buried in the plots for continued soil temperature monitoring. Soil moisture, pH, and soil chemistry of the plots were also recorded. Data were analyzed using least absolute shrinkage and selection operator and linear regression to identify the environmental variable with the greatest influence on vegetation regeneration and root biomass. There was lower root biomass and slower vegetation regeneration in high temperature plots. Soil temperature was positively correlated with soil moisture and negatively correlated with soil pH. Iron and sulfate were present in the soil in the highest quantities compared to other measured soil chemicals and had a strong positive relationship with soil temperature. Our findings suggest that soil temperature had a major impact on root biomass and vegetation regeneration. In geothermal fields, vegetation establishment and growth can be restricted by low soil moisture, low soil pH, and an imbalance in soil chemistry. The correlation between soil moisture, pH, chemistry, and plant regeneration was chiefly driven by soil temperature. Soil temperature was negatively correlated to the distance from the geothermal features. Apart from characterizing plant regeneration on geothermal soils, this study further demonstrates a novel approach to global warming experiments, which could be particularly useful in low heat flow geothermal systems that more realistically mimic soil warming.

7.
J Chem Ecol ; 43(1): 17-25, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27832345

ABSTRACT

Plant-feeding insects use visual and olfactory cues (shape, color, plant volatiles) for host location, but the relative importance of different cues and interactions with non-host-plant volatiles in ecosystems of varying plant biodiversity is unclear for most species. We studied invasive bark beetles and wood borers associated with pine trees to characterize interactions among color, host and non-host volatiles, by employing traps that mimic tree trunks. Cross-vane flight intercept traps (black, green, red, white, yellow, clear) and black funnel traps were used with and without attractants (α-pinene + ethanol), repellents (non-host green leaf volatiles, 'GLV'), and attractant/repellent combinations in four pine forests in New Zealand. We trapped 274,594 Hylurgus ligniperda, 7842 Hylastes ater, and 16,301 Arhopalus ferus. Trap color, attractant, and color × attractant effects were highly significant. Overall, black and red traps had the highest catches, irrespective of the presence of attractants. Alpha-pinene plus ethanol increased trap catch of H. ligniperda 200-fold but only 6-fold for H. ater and 2-fold for A. ferus. Green leaf volatiles had a substantial repellent effect on trap catch of H. ligniperda but less on H. ater and A. ferus. Attack by H. ligniperda was halved when logs were treated with GLV, and a similar effect was observed when logs were placed among broadleaved understory shrubs emitting GLV. Overall, H. ligniperda was most strongly affected by the olfactory cues used, whereas H. ater and A. ferus were more strongly affected by visual cues. Collectively, the results support the semiochemical diversity hypothesis, indicating that non-host plant volatiles from diverse plant communities or artificial dispensers can contribute to resistance against herbivores by partly disrupting host location.


Subject(s)
Coleoptera/physiology , Diptera/physiology , Feeding Behavior , Host-Parasite Interactions , Pinus/chemistry , Pinus/parasitology , Animals , Bicyclic Monoterpenes , Color , Cues , Ethanol , Introduced Species , Monoterpenes , Odorants , Pheromones , Visual Perception
8.
Glob Chang Biol ; 22(2): 889-902, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26391334

ABSTRACT

Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca  - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca  - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain.


Subject(s)
Carbon Dioxide/metabolism , Plant Leaves/metabolism , Trees/metabolism , Carbon Isotopes/metabolism , Cycadopsida/metabolism , Magnoliopsida/metabolism , Plant Stomata/metabolism
9.
Oecologia ; 175(3): 747-62, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24696359

ABSTRACT

There is evidence of continued stimulation of foliage photosynthesis in trees exposed to elevated atmospheric CO2 concentrations; however, this is mostly without a proportional growth response. Consequently, we lack information on the fate of this extra carbon (C) acquired. By a steady application of a (13)CO2 label in a free air CO2 enrichment (FACE) experiment, we traced the fate of C in 37-m-tall, ca. 110-year-old Picea abies trees in a natural forest in Switzerland. Hence, we are not reporting tree responses to elevated CO2 (which would require equally (13)C labeled controls), but are providing insights into assimilate processing in such trees. Sunlit needles and branchlets grow almost exclusively from current assimilates, whereas shaded parts of the crowns also rely on stored C. Only 2.5 years after FACE initiation, tree rings contained 100% new C. Stem-respiratory CO2 averaged 50% of new C over the entire FACE period. Fine roots and mycorrhizal fungi contained 49-56 and 26-43% new C, respectively, after 2.5 years. The isotopic signals in soil CO2 arrived 12 days after the onset of FACE, yet it contained only ca. 15% new C thereafter. We conclude that new C first feeds into fast turnover C pools in the canopy and becomes increasingly mixed with older C sources as one moves away (downward) from the crown. We speculate that enhanced C turnover (its metabolic cost) along the phloem path, as evidenced by basipetal isotope signal depletion, explains part of the 'missing carbon' in trees that assimilated more C under elevated CO2.


Subject(s)
Carbon/metabolism , Picea/metabolism , Plant Leaves/metabolism , Air/analysis , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Isotope Labeling , Phloem/metabolism , Photosynthesis , Plant Roots/metabolism , Plant Stems/metabolism , Soil/chemistry
10.
Physiol Plant ; 152(2): 301-15, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24547765

ABSTRACT

Southwest Australian Banksia woodlands are highly diverse plant communities that are threatened by drought- or temperature-induced mortality due to the region's changing climate. We examined water relations in dominant Banksia menziesii R. Br. trees using magnetic leaf patch clamp pressure (ZIM-) probes that allow continuous, real-time monitoring of leaf water status. Multiple ZIM-probes across the crown were complemented by traditional ecophysiological measurements. During summer, early stomatal downregulation of transpiration prevented midday balancing pressures from exceeding 2.5 MPa. Diurnal patterns of ZIM-probe and pressure chamber readings agreed reasonably well, however, ZIM-probes recorded short-term dynamics, which are impossible to capture using a pressure chamber. Simultaneous recordings of three ZIM-probes evenly spaced along leaf laminas revealed intrafoliar turgor gradients, which, however, did not develop in a strictly basi- or acropetal fashion and varied with cardinal direction. Drought stress manifested as increasing daily signal amplitude (low leaf water status) and occasionally as rising baseline at night (delayed rehydration). These symptoms occurred more often locally than across the entire crown. Microclimate effects on leaf water status were strongest in crown regions experiencing peak morning radiation (East and North). Extreme spring temperatures preceded the sudden death of B. menziesii trees, suggesting a temperature- or humidity-related tipping point causing rapid hydraulic failure as evidenced by collapsing ZIM-probe readings from an affected tree. In a warmer and drier future, increased frequency of B. menziesii mortality will result in significantly altered community structure and ecosystem function.


Subject(s)
Droughts , Proteaceae/physiology , Spatio-Temporal Analysis , Trees/physiology , Water/physiology , Australia , Circadian Rhythm/physiology , Plant Exudates/physiology , Plant Leaves/physiology , Plant Stomata/physiology , Plant Transpiration/physiology , Rheology , Temperature , Vapor Pressure
11.
Front Plant Sci ; 3: 229, 2012.
Article in English | MEDLINE | ID: mdl-23087696

ABSTRACT

Rising levels of atmospheric CO(2) have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO(2) concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO(2) enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35-40 m tall CO(2)-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550-700 ppm atmospheric CO(2)), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO(2) concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response.

SELECTION OF CITATIONS
SEARCH DETAIL
...