Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 93: 129433, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37557923

ABSTRACT

The α7 nicotinic acetylcholine receptor is a calcium permeable, ligand-gated ion channel that modulates synaptic transmission in the hippocampus, thalamus, and cerebral cortex. Previously disclosed work described PNU-120596 that acts as a powerful positive allosteric modulator of the α7 nicotinic acetylcholine receptor. The initial structure-activity relationships around PNU-120596 were gleaned from screening a large thiazole library. Independent systematic examination of the aryl and heteroaryl groups resulted in compounds with enhanced potency and improved physico-chemical properties culminating in the identification of 16 (PHA-758454). In the presence of acetylcholine, 16 enhanced evoked currents in rat hippocampal neurons. In a rat model of impaired sensory gating, treatment with 16 led to a reversal of the gating deficit in a dose-dependent manner. These results demonstrate that aryl heteroaryl ureas, like compound 16, may be useful tools for continued exploration of the unique biology of the α7 nicotinic acetylcholine receptor.


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , Rats , Animals , Hippocampus , Phenylurea Compounds/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemistry , Allosteric Regulation
2.
ACS Med Chem Lett ; 4(6): 560-4, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-24900709

ABSTRACT

The objective of the described research effort was to identify a novel serotonin and norepinephrine reuptake inhibitor (SNRI) with improved norepinephrine transporter activity and acceptable metabolic stability and exhibiting minimal drug-drug interaction. We describe herein the discovery of a series of 3-substituted pyrrolidines, exemplified by compound 1. Compound 1 is a selective SNRI in vitro and in vivo, has favorable ADME properties, and retains inhibitory activity in the formalin model of pain behavior. Compound 1 thus represents a potential new probe to explore utility of SNRIs in central nervous system disorders, including chronic pain conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...