Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 13(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37371425

ABSTRACT

The accurate detection of emotions has significant implications in healthcare, psychology, and human-computer interaction. Integrating personality information into emotion recognition can enhance its utility in various applications. The present study introduces a novel deep learning approach to emotion recognition, which utilizes electroencephalography (EEG) signals and the Big Five personality traits. The study recruited 60 participants and recorded their EEG data while they viewed unique sequence stimuli designed to effectively capture the dynamic nature of human emotions and personality traits. A pre-trained convolutional neural network (CNN) was used to extract emotion-related features from the raw EEG data. Additionally, a long short-term memory (LSTM) network was used to extract features related to the Big Five personality traits. The network was able to accurately predict personality traits from EEG data. The extracted features were subsequently used in a novel network to predict emotional states within the arousal and valence dimensions. The experimental results showed that the proposed classifier outperformed common classifiers, with a high accuracy of 93.97%. The findings suggest that incorporating personality traits as features in the designed network, for emotion recognition, leads to higher accuracy, highlighting the significance of examining these traits in the analysis of emotions.

2.
Basic Clin Neurosci ; 14(5): 687-700, 2023.
Article in English | MEDLINE | ID: mdl-38628840

ABSTRACT

Introduction: The study explores the use of Electroencephalograph (EEG) signals as a means to uncover various states of the human brain, with a specific focus on emotion classification. Despite the potential of EEG signals in this domain, existing methods face challenges. Features extracted from EEG signals may not accurately represent an individual's emotional patterns due to interference from time-varying factors and noise. Additionally, higher-level cognitive factors, such as personality, mood, and past experiences, further complicate emotion recognition. The dynamic nature of EEG data in terms of time series introduces variability in feature distribution and interclass discrimination across different time stages. Methods: To address these challenges, the paper proposes a novel adaptive ensemble classification method. The study introduces a new method for providing emotional stimuli, categorizing them into three groups (sadness, neutral, and happiness) based on their valence-arousal (VA) scores. The experiment involved 60 participants aged 19-30 years, and the proposed method aimed to mitigate the limitations associated with conventional classifiers. Results: The results demonstrate a significant improvement in the performance of emotion classifiers compared to conventional methods. The classification accuracy achieved by the proposed adaptive ensemble classification method is reported at 87.96%. This suggests a promising advancement in the ability to accurately classify emotions using EEG signals, overcoming the limitations outlined in the introduction. Conclusion: In conclusion, the paper introduces an innovative approach to emotion classification based on EEG signals, addressing key challenges associated with existing methods. By employing a new adaptive ensemble classification method and refining the process of providing emotional stimuli, the study achieves a noteworthy improvement in classification accuracy. This advancement is crucial for enhancing our understanding of the complexities of emotion recognition through EEG signals, paving the way for more effective applications in fields such as neuroinformatics and affective computing.

3.
Clin EEG Neurosci ; 47(4): 291-297, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26920849

ABSTRACT

A reliable and unobtrusive quantification of changes in cortical activity during short-term memory task can be used to evaluate the efficacy of interfaces and to provide real-time user-state information. In this article, we investigate changes in electroencephalogram signals in short-term memory with respect to the baseline activity. The electroencephalogram signals have been analyzed using 9 linear and nonlinear/dynamic measures. We applied statistical Wilcoxon examination and Davis-Bouldian criterion to select optimal discriminative features. The results show that among the features, the permutation entropy significantly increased in frontal lobe and the occipital second lower alpha band activity decreased during memory task. These 2 features reflect the same mental task; however, their correlation with memory task varies in different intervals. In conclusion, it is suggested that the combination of the 2 features would improve the performance of memory based neurofeedback systems.


Subject(s)
Algorithms , Brain/physiology , Electroencephalography/methods , Memory, Short-Term/physiology , Neurofeedback/methods , Pattern Recognition, Automated/methods , Adult , Discriminant Analysis , Female , Humans , Machine Learning , Male , Reproducibility of Results , Sensitivity and Specificity
4.
Biomed Res Int ; 2014: 764382, 2014.
Article in English | MEDLINE | ID: mdl-25133180

ABSTRACT

In this paper, differences between multichannel EEG signals of artists and nonartists were analyzed during visual perception and mental imagery of some paintings and at resting condition using approximate entropy (ApEn). It was found that ApEn is significantly higher for artists during the visual perception and the mental imagery in the frontal lobe, suggesting that artists process more information during these conditions. It was also observed that ApEn decreases for the two groups during the visual perception due to increasing mental load; however, their variation patterns are different. This difference may be used for measuring progress in novice artists. In addition, it was found that ApEn is significantly lower during the visual perception than the mental imagery in some of the channels, suggesting that visual perception task requires more cerebral efforts.


Subject(s)
Art , Electroencephalography , Entropy , Imagery, Psychotherapy , Rest , Signal Processing, Computer-Assisted , Visual Perception/physiology , Adult , Algorithms , Female , Humans , Task Performance and Analysis
5.
J Med Eng Technol ; 37(1): 43-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23276155

ABSTRACT

Content-based image retrieval (CBIR) has been one of the most active areas of research. The retrieval principle of CBIR systems is based on visual features such as colour, texture and shape or the semantic meaning of the images. A CBIR system can be used to locate medical images in large databases. This paper presents a CBIR system for retrieving digital human brain magnetic resonance images (MRI) based on textural features and the support vector machine (SVM) learning method. This system can retrieve similar images from the database in two groups: normal and tumoural. This research uses the knowledge of the CBIR approach to the application of medical decision support and discrimination between the normal and abnormal medical images based on features. This study presents and compares the results of the proposed method with the CBIR systems used in recent works. The experimental results indicate that the proposed method is reliable and has high image retrieval efficiency compared with the previous works.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Support Vector Machine , Brain/anatomy & histology , Brain Neoplasms/pathology , Databases, Factual , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...