Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668773

ABSTRACT

Financial technology, or Fintech, represents an emerging industry on the global market. With online transactions on the rise, the use of IT for automation of financial services is of increasing importance. Fintech enables institutions to deliver services to customers worldwide on a 24/7 basis. Its services are often easy to access and enable customers to perform transactions in real-time. In fact, advantages such as these make Fintech increasingly popular among clients. However, since Fintech transactions are made up of information, ensuring security becomes a critical issue. Vulnerabilities in such systems leave them exposed to fraudulent acts, which cause severe damage to clients and providers alike. For this reason, techniques from the area of Machine Learning (ML) are applied to identify anomalies in Fintech applications. They target suspicious activity in financial datasets and generate models in order to anticipate future frauds. We contribute to this important issue and provide an evaluation on anomaly detection methods for this matter. Experiments were conducted on several fraudulent datasets from real-world and synthetic databases, respectively. The obtained results confirm that ML methods contribute to fraud detection with varying success. Therefore, we discuss the effectiveness of the individual methods with regard to the detection rate. In addition, we provide an analysis on the influence of selected features on their performance. Finally, we discuss the impact of the observed results for the security of Fintech applications in the future.

2.
PLoS One ; 12(2): e0172323, 2017.
Article in English | MEDLINE | ID: mdl-28245222

ABSTRACT

Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.


Subject(s)
Cluster Analysis , Computational Biology/methods , Protein Interaction Mapping/methods , Algorithms , Congresses as Topic , Data Collection , Data Mining , Information Services , Least-Squares Analysis , Machine Learning , Motion Pictures , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...