Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
R Soc Open Sci ; 5(3): 172412, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29657823

ABSTRACT

Our goals were to explore the relationship between biogeography and the evolution of fire-adaptive syndromes in the genus Pinus. We used a previously published time-calibrated phylogeny and conducted ancestral trait reconstruction to estimate the likely timing of diversification in Pinus, and to determine when fire-adaptive syndromes evolved in the lineage. To explore trait conservation among fire syndromes and to investigate historical biogeography, we constructed ancestral state reconstructions using the program RASP and estimated the degree of conservatism for fire-adapted traits in the program BaTS. Our reconstructions suggest that the Bering land bridge, which connected North America and Asia, probably played a major role in early pine evolution. Our estimates indicated that fire-adaptive syndromes seem to have evolved more frequently in New World taxa and probably are related to the uplift of major North American mountain ranges. Our data suggest that certain geographically widespread adaptations to fire evolved repeatedly, possibly due to localized changes in climate and environment, rather than resulting from large dispersal events of pre-adapted individuals.

2.
Evolution ; 65(9): 2719-24, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21884069

ABSTRACT

The study of host shifts by herbivorous insects has played an important role in evolutionary biology, contributing to research in coevolution, ecological speciation, and adaptive radiation. As invasive plants become more abundant in many ecosystems, the potential for exotic host use by native insects increases. Graves and Shapiro (2003) have documented exotic host use by 34% of Californian butterflies, suggesting that the plants and butterflies of California might be an important model system for the colonization and utilization of novel resources. In this study, we analyze relationships among geographic range, native diet breadth, and the use of exotic hosts by Californian butterflies and skippers (Lepidoptera). Geographic range and, to a lesser extent, native diet breadth are significant predictors of exotic host use, with positive relationships found both before and after phylogenetic correction. These results give insight into the process of insect host range evolution, as geographically widespread generalists have an apparently greater tendency to use novel, exotic hosts than geographically constrained specialists. Increasing occurrences of exotic host use are expected and those species not capable of shifting to nonnative hosts are likely to have higher vulnerability to extirpation and extinction in the future.


Subject(s)
Butterflies/physiology , Introduced Species , Adaptation, Physiological , Animals , Butterflies/classification , Butterflies/growth & development , California , Food Chain , Food Preferences , Geography , Larva/classification , Larva/growth & development , Larva/physiology , Linear Models , Phylogeny , Plants
SELECTION OF CITATIONS
SEARCH DETAIL