Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 6(7): 4200-4213, 2020 07 13.
Article in English | MEDLINE | ID: mdl-33463339

ABSTRACT

Decellularized extracellular matrix (ECM) scaffolds derived from tissues and organs are complex biomaterials used in clinical and research applications. A number of decellularization protocols have been described for ECM biomaterials derivation, each adapted to a particular tissue and use, restricting comparisons among materials. One of the major sources of variability in ECM products comes from the tissue source and animal age. Although this variability could be minimized using established tissue sources, other sources arise from the decellularization process itself. Overall, current protocols require manual work and are poorly standardized with regard to the choice of reagents, the order by which they are added, and exposure times. The combination of these factors adds variability affecting the uniformity of the final product between batches. Furthermore, each protocol needs to be optimized for each tissue and tissue source making tissue-to-tissue comparisons difficult. Automation and standardization of ECM scaffold development constitute a significant improvement to current biomanufacturing techniques but remains poorly explored. This study aimed to develop a biofabrication method for fast and automated derivation of raw material for ECM hydrogel production while preserving ECM composition and controlling lot-to-lot variability. The main result was a closed semibatch bioreactor system with automated dosing of decellularization reagents capable of deriving ECM material from pretreated soft tissues. The ECM was further processed into hydrogels to demonstrate gelation and cytocompatibility. This work presents a versatile, scalable, and automated platform for the rapid production of ECM scaffolds.


Subject(s)
Extracellular Matrix , Tissue Scaffolds , Animals , Biocompatible Materials , Bioreactors , Hydrogels , Swine
2.
ACS Biomater Sci Eng ; 6(3): 1690-1703, 2020 03 09.
Article in English | MEDLINE | ID: mdl-33455360

ABSTRACT

The vocal fold lamina propria (VFLP), one of the outermost layers of the vocal fold (VF), is composed of tissue-specific extracellular matrix (ECM) proteins and is highly susceptible to injury. Various biomaterials have been clinically tested to treat voice disorders (e.g., hydrogels, fat, and hyaluronic acid), but satisfactory recovery of the VF functionality remains elusive. Fibrosis or scar formation in the VF is a major challenge, and the development and refinement of novel therapeutics that promote the healing and normal function of the VF are needed. Injectable hydrogels derived from native tissues have been previously reported with major advantages over synthetic hydrogels, including constructive tissue remodeling and reduced scar tissue formation. This study aims to characterize the composition of a decellularized porcine VFLP-ECM scaffold and the cytocompatibility and potential antifibrotic properties of a hydrogel derived from VFLP-ECM. In addition, we isolated potential matrix-bound vesicles (MBVs) and macromolecules from the VFLP-ECM that also downregulated smooth muscle actin ACTA2 under transforming growth factor-beta 1 (TGF-ß1) stimulation. The results provide evidence of the unique protein composition of the VFLP-ECM and the potential link between the components of the VFLP-ECM and the inhibition of TGF-ß1 signaling observed in vitro when transformed into injectable forms.


Subject(s)
Biocompatible Materials , Vocal Cords , Animals , Biocompatible Materials/pharmacology , Fibroblasts , Mucous Membrane , Swine , Transforming Growth Factor beta1
SELECTION OF CITATIONS
SEARCH DETAIL
...