Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(8): e0202416, 2018.
Article in English | MEDLINE | ID: mdl-30133496

ABSTRACT

Predicting the fate of chloroethenes in groundwater is essential when evaluating remediation strategies. Such predictions are expected to be more accurate when incorporating isotopic parameters. Although secondary chlorine isotope effects have been observed during reductive dechlorination of chloroethenes, development of modelling frameworks and simulation has thus far been limited. We have developed a novel mathematical framework to simulate the C/Cl isotopic fractionation during reductive dechlorination of chloroethenes. This framework differs from the existing state of the art by incorporating secondary isotopic effects and considering both C and Cl isotopes simultaneously. A comprehensive general model (GM), which is expected to be the closest representation of reality thus far investigated, was implemented. A less computationally intensive simplified model (SM), with the potential for use in modelling of complex reactive transport scenarios, was subsequently validated based on its comparison to GM. The approach of GM considers all isotopocules (i.e. molecules differing in number and position of heavy and light isotopes) of each chloroethene as individual species, of which each is degraded at a different rate. Both models GM and SM simulated plausible C/Cl isotopic compositions of tetrachloroethene (PCE), trichloroethene (TCE) and cis-1,2-dichloroethene (cDCE) during sequential dechlorination when using experimentally relevant kinetic and isotopic parameters. The only major difference occurred in the case where different secondary isotopic effects occur at the different non-reacting positions when PCE is dechlorinated down to cDCE. This observed discrepancy stems from the unequal Cl isotope distribution in TCE that arises due to the occurrence of differential secondary Cl isotopic effects during transformation of PCE to TCE. Additionally, these models are shown to accurately reproduce experimental data obtained during reductive dechlorination by bacterial enrichments harbouring Sulfurospirillum spp. where secondary isotope effects are known to have occurred. These findings underscore a promising future for the development of reactive transport models that incorporate isotopic parameters.


Subject(s)
Biota , Hydrocarbons, Chlorinated/metabolism , Models, Biological , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental
2.
J Contam Hydrol ; 192: 1-19, 2016 09.
Article in English | MEDLINE | ID: mdl-27318432

ABSTRACT

Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.


Subject(s)
Environmental Restoration and Remediation/methods , Groundwater/chemistry , Tetrachloroethylene/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Carbon Isotopes/analysis , Denmark , Groundwater/analysis , Groundwater/microbiology , Halogenation , Iron , Sulfides
3.
Water Res ; 92: 235-43, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26874254

ABSTRACT

Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ(13)C/Δδ(37)Cl) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r(2) = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field.


Subject(s)
Chlorine/chemistry , Groundwater/chemistry , Isotope Labeling/methods , Trichloroethanes/chemistry , Carbon Isotopes , Halogenation , Hydrocarbons/analysis , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis
4.
Environ Sci Technol ; 48(16): 9179-86, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25000152

ABSTRACT

Dual isotope slopes are increasingly used to identify transformation pathways of contaminants. We investigated if reductive dechlorination of tetrachloroethene (PCE) by consortia containing bacteria with different reductive dehalogenases (rdhA) genes can lead to variable dual C-Cl isotope slopes and if different slopes also occur in the field. Two bacterial enrichments harboring Sulfurospirillum spp. but different rdhA genes yielded two distinct δ(13)C to δ(37)Cl slopes of 2.7 ± 0.3 and 0.7 ± 0.2 despite a high similarity in gene sequences. This suggests that PCE reductive dechlorination could be catalyzed according to at least two distinct reaction mechanisms or that rate-limiting steps might vary. At two field sites, two distinct dual isotope slopes of 0.7 ± 0.3 and 3.5 ± 1.6 were obtained, each of which fits one of the laboratory slopes within the range of uncertainty. This study hence provides additional insight into multiple reaction mechanisms underlying PCE reductive dechlorination. It also demonstrates that caution is necessary if a dual isotope approach is used to differentiate between transformation pathways of chlorinated ethenes.


Subject(s)
Carbon Isotopes/analysis , Chlorine/analysis , Epsilonproteobacteria/metabolism , Tetrachloroethylene/metabolism , Chlorine/metabolism , Genes, Bacterial , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...