Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Enzyme Microb Technol ; 152: 109937, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34749019

ABSTRACT

Polyethylene terephthalate (PET) degrading enzymes have recently obtained an increasing interest as a means to decompose plastic waste. Here, we have studied the binding of three PET hydrolases on a suspended PET powder under conditions of both enzyme- and substrate excess. A Langmuir isotherm described the binding process reasonably and revealed a prominent affinity for the PET substrate, with dissociation constants consistently below 150 nM. The saturated substrate coverage approximately corresponded to a monolayer on the PET surface for all three enzymes. No distinct contributions from specific ligand binding in the active site could be identified, which points towards adsorption predominantly driven by non-specific interactions in contrast to enzymes naturally evolved for the breakdown of insoluble polymers. However, we observed a correlation between the progression of enzymatic hydrolysis and increased binding capacity, probably due to surface modifications of the PET polymer over time. Our results provide functional insight, suggesting that rational design should target the specific ligand interaction in the active site rather than the already high, general adsorption capacity of these enzymes.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Adsorption , Catalytic Domain , Hydrolases/metabolism , Hydrolysis
2.
J Biol Chem ; 296: 100504, 2021.
Article in English | MEDLINE | ID: mdl-33675751

ABSTRACT

Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulose/metabolism , Fungal Proteins/metabolism , Mixed Function Oxygenases/metabolism , Polysaccharides/metabolism , Hydrolysis , Hypocreales/enzymology , Oxidation-Reduction , Polysaccharides/chemistry , Sordariales/enzymology
3.
Biochem J ; 477(10): 1971-1982, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32391552

ABSTRACT

The kinetic theory of enzymes that modify insoluble substrates is still underdeveloped, despite the prevalence of this type of reaction both in vivo and industrial applications. Here, we present a steady-state kinetic approach to investigate inhibition occurring at the solid-liquid interface. We propose to conduct experiments under enzyme excess (E0 ≫ S0), i.e. the opposite limit compared with the conventional Michaelis-Menten framework. This inverse condition is practical for insoluble substrates and elucidates how the inhibitor reduces enzyme activity through binding to the substrate. We claim that this type of inhibition is common for interfacial enzyme reactions because substrate accessibility is low, and we show that it can be analyzed by experiments and rate equations that are analogous to the conventional approach, except that the roles of enzyme and substrate have been swapped. To illustrate the approach, we investigated the major cellulases from Trichoderma reesei (Cel6A and Cel7A) acting on insoluble cellulose. As model inhibitors, we used catalytically inactive variants of Cel6A and Cel7A. We made so-called inverse Michaelis-Menten curves at different concentrations of inhibitors and found that a new rate equation accounted well for the data. In most cases, we found a mixed type of surface-site inhibition mechanism, and this probably reflected that the inhibitor both competed with the enzyme for the productive binding-sites (competitive inhibition) and hampered the processive movement on the surface (uncompetitive inhibition). These results give new insights into the complex interplay of Cel7A and Cel6A on cellulose and the approach may be applicable to other heterogeneous enzyme reactions.


Subject(s)
Cellulases/metabolism , Enzyme Inhibitors/metabolism , Enzymes/metabolism , Trichoderma/enzymology , Binding Sites , Cellulose/metabolism , Hydrolysis , Kinetics
5.
Protein Eng Des Sel ; 32(9): 401-409, 2019 12 31.
Article in English | MEDLINE | ID: mdl-32100026

ABSTRACT

The glycoside hydrolase (GH) family 6 is an important group of enzymes that constitute an essential part of industrial enzyme cocktails used to convert lignocellulose into fermentable sugars. In nature, enzymes from this family often have a carbohydrate binding module (CBM) from the CBM family 1. These modules are known to promote adsorption to the cellulose surface and influence enzymatic activity. Here, we have investigated the functional diversity of CBMs found within the GH6 family. This was done by constructing five chimeric enzymes based on the model enzyme, TrCel6A, from the soft-rot fungus Trichoderma reesei. The natural CBM of this enzyme was exchanged with CBMs from other GH6 enzymes originating from different cellulose degrading fungi. The chimeric enzymes were expressed in the same host and investigated in adsorption and quasi-steady-state kinetic experiments. Our results quantified functional differences of these phylogenetically distant binding modules. Thus, the partitioning coefficient for substrate binding varied 4-fold, while the maximal turnover (kcat) showed a 2-fold difference. The wild-type enzyme showed the highest cellulose affinity on all tested substrates and the highest catalytic turnover. The CBM from Serendipita indica strongly promoted the enzyme's ability to form productive complexes with sites on the substrate surface but showed lower turnover of the complex. We conclude that the CBM plays an important role for the functional differences between GH6 wild-type enzymes.


Subject(s)
Carbohydrate Metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Recombinant Fusion Proteins/metabolism , Trichoderma/enzymology , Adsorption , Amino Acid Sequence , Cellulose/chemistry , Cellulose 1,4-beta-Cellobiosidase/chemistry , Kinetics , Recombinant Fusion Proteins/chemistry
6.
Protein Eng Des Sel ; 30(7): 495-501, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28873985

ABSTRACT

Various cellulases consist of a catalytic domain connected to a carbohydrate-binding module (CBM) by a flexible linker peptide. The linker if often strongly O-glycosylated and typically has a length of 20-50 amino acid residues. Functional roles, other than connecting the two folded domains, of the linker and its glycans, have been widely discussed, but experimental evidence remains sparse. One of the most studied cellulose degrading enzymes is the multi-domain cellobiohydrolase Cel7A from Hypocrea jecorina. Here, we designed variants of Cel7A with mutations in the linker region to elucidate the role of the linker. We found that moderate modification of the linker could result in significant changes in substrate affinity and catalytic efficacy. These changes were quite different for different linker variants. Thus, deletion of six residues near the catalytic domain had essentially no effects on enzyme function. Conversely, a substitution of four glycosylation sites near the middle of the linker reduced substrate affinity and increased maximal turnover. The observation of weaker binding provides some support of recent suggestions that linker glycans may be directly involved in substrate interactions. However, a variant with several inserted glycosylation sites near the CBM also showed lower affinity for the substrate compared to the wild-type, and we suggest that substrate interactions of the glycans depend on their exact location as well as other factors such as changes in structure and dynamics of the linker peptide.


Subject(s)
Catalysis , Cellulose 1,4-beta-Cellobiosidase/chemistry , Hypocrea/enzymology , Amino Acid Sequence/genetics , Cellulase/chemistry , Cellulose/chemistry , Cellulose 1,4-beta-Cellobiosidase/genetics , Kinetics
7.
Biochim Biophys Acta Proteins Proteom ; 1865(12): 1739-1745, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28844741

ABSTRACT

Cellulose degrading fungi such as Hypocrea jecorina secrete several cellulases including the two cellobiohydrolases (CBHs) Cel6A and Cel7A. The two CBHs differ in catalytic mechanism, attack different ends, belong to different families, but are both processive multi-domain enzymes that are essential in the hydrolysis of cellulose. Here we present a direct kinetic comparison of these two enzymes acting on insoluble cellulose. We used both continuous- and end-point assays under either enzyme- or substrate excess, and found distinct kinetic differences between the two CBHs. Cel6A was catalytically superior with a maximal rate over four times higher than Cel7A. Conversely, the ability of Cel6A to attack diverse structures on the cellulose surface was inferior to Cel7A. This latter difference was pronounced as the density of attack sites for Cel7A was almost an order of magnitude higher compared to Cel6A. We conclude that Cel6A is a fast but selective enzyme and that Cel7A is slower, but promiscuous. One consequence of this is that Cel6A is more effective when substrate is plentiful, while Cel7A excels when substrate is limiting. These diverse kinetic properties of Cel6A and Cel7A might elucidate why both cellobiohydrolases are prominent in cellulolytic degrading fungi.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/metabolism , Hypocrea/enzymology , Biocatalysis , Kinetics
8.
J Biol Chem ; 290(36): 22193-202, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26183777

ABSTRACT

We measured hydrolytic rates of four purified cellulases in small increments of temperature (10-50 °C) and substrate loads (0-100 g/liter) and analyzed the data by a steady state kinetic model that accounts for the processive mechanism. We used wild type cellobiohydrolases (Cel7A) from mesophilic Hypocrea jecorina and thermophilic Rasamsonia emersonii and two variants of these enzymes designed to elucidate the role of the carbohydrate binding module (CBM). We consistently found that the maximal rate increased strongly with temperature, whereas the affinity for the insoluble substrate decreased, and as a result, the effect of temperature depended strongly on the substrate load. Thus, temperature had little or no effect on the hydrolytic rate in dilute substrate suspensions, whereas strong temperature activation (Q10 values up to 2.6) was observed at saturating substrate loads. The CBM had a dual effect on the activity. On one hand, it diminished the tendency of heat-induced desorption, but on the other hand, it had a pronounced negative effect on the maximal rate, which was 2-fold larger in variants without CBM throughout the investigated temperature range. We conclude that although the CBM is beneficial for affinity it slows down the catalytic process. Cel7A from the thermophilic organism was moderately more activated by temperature than the mesophilic analog. This is in accord with general theories on enzyme temperature adaptation and possibly relevant information for the selection of technical cellulases.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulose/metabolism , Fungal Proteins/metabolism , Temperature , Algorithms , Ascomycota/enzymology , Ascomycota/genetics , Binding, Competitive , Cellobiose/metabolism , Cellulose 1,4-beta-Cellobiosidase/genetics , Electrophoresis, Polyacrylamide Gel , Fungal Proteins/genetics , Genetic Variation , Hydrolysis , Hypocrea/enzymology , Hypocrea/genetics , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Protein Binding , Substrate Specificity , Trichoderma/enzymology , Trichoderma/genetics
9.
Enzyme Microb Technol ; 58-59: 68-74, 2014 May 10.
Article in English | MEDLINE | ID: mdl-24731827

ABSTRACT

A novel electrochemical enzyme biosensor was developed for real-time detection of cellulase activity when acting on their natural insoluble substrate, cellulose. The enzyme biosensor was constructed with pyranose dehydrongease (PDH) from Agaricus meleagris that was immobilized on the surface of a carbon paste electrode, which contained the mediator 2,6-dichlorophenolindophenol (DCIP). An oxidation current of the reduced form of DCIP, DCIPH2, produced by the PDH-catalyzed reaction with either glucose or cellobiose, was recorded under constant-potential amperometry at +0.25V (vs. Ag/AgCl). The PDH-biosensor was shown to be anomer unspecific and it can therefore be used in kinetic studies over broad time-scales of both retaining- and inverting cellulases (in addition to enzyme cocktails). The biosensor was used for real-time measurements of the activity of the inverting cellobiohydrolase Cel6A from Hypocrea jecorina (HjCel6A) on cellulosic substrates with different morphology (bacterial microcrystalline cellulose (BMCC) and Avicel). The steady-state rate of hydrolysis increased towards a saturation plateau with increasing loads of substrate. The experimental results were rationalized using a steady-state rate equation for processive cellulases, and it was found that the turnover for HjCel6A at saturating substrate concentration (i.e. maximal apparent specific activity) was similar (0.39-0.40s(-1)) for the two substrates. Conversely, the substrate load at half-saturation was much lower for BMCC compared to Avicel. Biosensors covered with a polycarbonate membrane showed high operational stability of several weeks with daily use.


Subject(s)
Alcohol Oxidoreductases/metabolism , Biosensing Techniques , Cellulase/metabolism , Cellulose/metabolism , Electrochemical Techniques/instrumentation , Fungal Proteins/metabolism , 2,6-Dichloroindophenol , Agaricus/enzymology , Calibration , Carbon , Cellulose 1,4-beta-Cellobiosidase/metabolism , Computer Systems , Electrodes , Equipment Design , Hydrolysis , Hypocrea/enzymology , Kinetics , Membranes, Artificial , Optical Rotation , Reproducibility of Results , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...