Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Front Oncol ; 13: 1180084, 2023.
Article in English | MEDLINE | ID: mdl-37588095

ABSTRACT

The presence of microorganism communities (MOCs) comprised of bacteria, fungi, archaea, algae, protozoa, viruses, and the like, are ubiquitous in all living tissue, including plant and animal. MOCs play a significant role in establishing innate and acquired immunity, thereby influencing susceptibility and resistance to disease. This understanding has fostered substantial advancements in several fields such as agriculture, food science/safety, and the development of vaccines/adjuvants, which rely on administering inactivated-attenuated MOC pathogens. Historical evidence dating back to the 1800s, including reports by Drs Busch, Coley, and Fehleisen, suggested that acute febrile infection in response to "specific microbes" could trigger spontaneous tumor remission in humans. This discovery led to the purposeful administration of the same attenuated strains, known as "Coley's toxin," marking the onset of the first microbial (pathogen) associated molecular pattern (MAMPs or PAMPs)-based tumor immunotherapy, used clinically for over four decades. Today, these same MAMPS are consumed orally by billions of consumers around the globe, through "specific" mediums (immune boosting "herbal supplements") as carriers of highly concentrated MOCs accrued in roots, barks, hulls, sea algae, and seeds. The American Herbal Products Association (AHPA) mandates microbial reduction in botanical product processing but does not necessitate the removal of dead MAMP laden microbial debris, which we ingest. Moreover, while existing research has focused on the immune-modulating role of plant phytochemicals, the actual immune-boosting properties might instead reside solely in the plant's MOC MAMP laden biomass. This assertion is logical, considering that antigenic immune-provoking epitopes, not phytochemicals, are known to stimulate immune response. This review explores a neglected area of research regarding the immune-boosting effects of the herbal microbiome - a presence which is indirectly corroborated by various peripheral fields of study and poses a fundamental question: Given that food safety focuses on the elimination of harmful pathogens and crop science acknowledges the existence of plant microbiomes, what precisely are the immune effects of ingesting MAMPs of diverse structural composition and concentration, and where are these distributed in our botanicals? We will discuss the topic of concentrated edible MAMPs as acid and thermally stable motifs found in specific herbs and how these would activate cognate pattern recognition receptors (PPRs) in the upper gut-associated lymphoid tissue (GALT), including Peyer's patches and the lamina propria, to boost antibody titers, CD8+ and CD4+ T cells, NK activity, hematopoiesis, and facilitating M2 to M1 macrophage phenotype transition in a similar manner as vaccines. This new knowledge could pave the way for developing bioreactor-grown/heat-inactivated MOC therapies to boost human immunity against infections and improve tumor surveillance.

2.
Nutrients ; 14(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36432484

ABSTRACT

The variety of therapies available for treating and preventing triple-negative breast cancer (TNBC) is constrained by the absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor 2. Nrf2 (nuclear factor-erythroid 2-related factor), and PD-L1 (program cell death ligand 1), a downstream signaling target, have a strong correlation to oxidative stress and inflammation, major factors in the development and progression of TNBC. In this study, the genetically distinct MDA-MB-231 and MDA-MB-468 TNBC cells were treated with the natural component thymoquinone (TQ). The results show that TQ exhibits considerable antioxidant activity and decreases the generation of H2O2, at the same time increasing catalase (CAT) activity, superoxide dismutase (SOD) enzyme, and glutathione (GSH). Additionally, the results show that TQ treatment increased the levels of the different genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM in both cell lines with significant large-fold change in MDA-MB-468 cells (+157.65 vs. +1.7, +48.87 vs. +2.63 and +4.78 vs. +2.17), respectively. Nrf2 mRNA and protein expression were also significantly increased in TQ-treated TNBC cells despite being higher in MDA-MB-468 cells (6.67 vs. 4.06). Meanwhile, TQ administration increased mRNA levels while decreasing PD-L1 protein expression in both cell lines. In conclusion, TQ modifies the expression of multiple oxidative-stress-antioxidant system genes, ROS, antioxidant enzymes, Nrf2, and PD-L1 protein, pointing to the therapeutic potential and chemopreventive utilization of TQ in TNBC.


Subject(s)
Antioxidants , Triple Negative Breast Neoplasms , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Up-Regulation , Down-Regulation , Hydrogen Peroxide/metabolism , Glutathione/metabolism , RNA, Messenger
3.
FASEB J ; 36 Suppl 12022 05.
Article in English | MEDLINE | ID: mdl-35723877

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a metastatic nature. TNBC lacks the expression of the progesterone receptor, estrogen receptor, and human epidermal growth factor receptor 2. The absence of these three receptors limits the therapy options. Meanwhile, conventional medication is not very effective in the treatment and prevention of TNBC. Developing innovative therapeutic agents from natural bioactive compounds is a viable option. In the current study, the natural compound thymoquinone (TQ) was used in MDA-MB-231 TNBC cells. A dose response to TQ (0-50 µM) was obtained following a 24-hour exposure. An Annexin V-FITC apoptosis detection was used to study the apoptotic effect of TQ.  With increasing TQ concentrations from 0-20 µM, flow cytometer examination revealed an increase in apoptotic cells. Nearly 80% of the cells studied were in the apoptotic phase at 20 µM. (early and late apoptosis). Meanwhile, at 30 µM, there was a significant drop in apoptotic cells, which may be interpreted as an increase in necrotic cells. Molecular-targeted therapy is a new approach in treating cancer. The effect of TQ on the expression of Nrf2(Nuclear factor erythroid 2- related factor 2) and PD-L1 (Programmed death-ligand 1) was investigated using a specific primary antibody against these proteins. A Western blot analysis confirmed TQ's ability to change the expression of both proteins under investigation. According to normalized data, TQ had the ability to elicit more than 2-fold increase in Nrf2 expression in IFN-γ stimulated MDA-MB-231 cells. In contrast, co-treated cells (IFN-γ + TQ) showed a 65 percent reduction in PD-L1 expression. In conclusion, TQ was suggested as a promising anticancer option for treating  TNBC.


Subject(s)
Triple Negative Breast Neoplasms , B7-H1 Antigen/genetics , Benzoquinones , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Humans , NF-E2-Related Factor 2 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Up-Regulation
4.
Nutrients ; 14(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35631261

ABSTRACT

Breast cancer (BC) is the most common cancer in women worldwide, and it is one of the leading causes of cancer death in women. triple-negative breast Cancer (TNBC), a subtype of BC, is typically associated with the highest pathogenic grade and incidence in premenopausal and young African American (AA) women. Chemotherapy, the most common treatment for TNBC today, can lead to acquired resistance and ineffective treatment. Therefore, novel therapeutic approaches are needed to combat medication resistance and ineffectiveness in TNBC patients. Thymoquinone (TQ) is shown to have a cytotoxic effect on human cancer cells in vitro. However, TQ's mode of action and precise mechanism in TNBC disease in vitro have not been adequately investigated. Therefore, TQ's effects on the genetically different MDA-MB-468 and MDA-MB-231 human breast cancer cell lines were assessed. The data obtained show that TQ displayed cytotoxic effects on MDA-MB-468 and MDA-MB-231 cells in a time- and concentration-dependent manner after 24 h, with IC50 values of 25.37 µM and 27.39 µM, respectively. Moreover, MDA-MB-231 and MDA-MB-468 cells in a scratched wound-healing assay displayed poor wound closure, inhibiting invasion and migration via cell cycle blocking after 24 h. TQ arrested the cell cycle phase in MDA-MB-231 and MDA-MB-468 cells. The three cell cycle stages in MDA-MB-468 cells were significantly affected at 15 and 20 µM for G0/G1 and S phases, as well as all TQ concentrations for G2/M phases. In MDA-MB-468 cells, there was a significant decrease in G0/G1 phases with a substantial increase in the S phase and G2/M phases. In contrast, MDA-MB-231 showed a significant effect only during the two cell cycle stages (S and G2/M), at concentrations of 15 and 20 µM for S phases and all TQ values for G2/M phases. The TQ effect on the apoptotic gene profiles indicated that TQ upregulated 15 apoptotic genes in MDA-MB-231 TNBC cells, including caspases, GADD45A, TP53, DFFA, DIABLO, BNIP3, TRAF2/3, and TNFRSF10A. In MDA-MB-468 cells, 16 apoptotic genes were upregulated, including TNFRSF10A, TNF, TNFRSF11B, FADD TNFRSF10B, CASP2, and TRAF2, all of which are important for the apoptotic pathway andsuppress the expression of one anti-apoptotic gene, BIRC5, in MDA-MB-231 cells. Compared to MDA-MB-231 cells, elevated levels of TNF and their receptor proteins may contribute to their increased sensitivity to TQ-induced apoptosis. It was concluded from this study that TQ targets the MDA-MB-231 and MDA-MB-468 cells differently. Additionally, due to the aggressive nature of TNBC and the lack of specific therapies in chemoresistant TNBC, our findings related to the identified apoptotic gene profile may point to TQ as a potential agent for TNBC therapy.


Subject(s)
Triple Negative Breast Neoplasms , Benzoquinones , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression , Humans , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 2/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
5.
Biomolecules ; 11(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34944395

ABSTRACT

A number of aggressive human malignant tumors are characterized by an intensified glycolytic rate, over-expression of lactic acid dehydrogenase A (LDHA), and subsequent lactate accumulation, all of which contribute toward an acidic peri-cellular immunosuppressive tumor microenvironment (TME). While recent focus has been directed at how to inhibit LDHA, it is now becoming clear that multiple isozymes of LDH must be simultaneously inhibited in order to fully suppress lactic acid and halt glycolysis. In this work we explore the biochemical and genomic consequences of an applied triple LDH isozyme inhibitor (A, B, and C) (GNE-140) in MDA-MB-231 triple-negative breast cancer cells (TNBC) cells. The findings confirm that GNE-140 does in fact, fully block the production of lactic acid, which also results in a block of glucose utilization and severe impedance of the glycolytic pathway. Without a fully functional glycolytic pathway, breast cancer cells continue to thrive, sustain viability, produce ample energy, and maintain mitochondrial potential (ΔΨM). The only observable negative consequence of GNE-140 in this work, was the attenuation of cell division, evident in both 2D and 3D cultures and occurring in fully viable cells. Of important note, the cytostatic effects were not reversed by the addition of exogenous (+) lactic acid. While the effects of GNE-140 on the whole transcriptome were mild (12 up-regulated differential expressed genes (DEGs); 77 down-regulated DEGs) out of the 48,226 evaluated, the down-regulated DEGS collectively centered around a loss of genes related to mitosis, cell cycle, GO/G1-G1/S transition, and DNA replication. These data were also observed with digital florescence cytometry and flow cytometry, both corroborating a G0/G1 phase blockage. In conclusion, the findings in this work suggest there is an unknown element linking LDH enzyme activity to cell cycle progression, and this factor is completely independent of lactic acid. The data also establish that complete inhibition of LDH in cancer cells is not a detriment to cell viability or basic production of energy.


Subject(s)
Cytostatic Agents/pharmacology , Lactic Acid/metabolism , Pyridones/pharmacology , Thiophenes/pharmacology , Triple Negative Breast Neoplasms/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Glycolysis , High-Throughput Screening Assays , Humans , Lactic Acid/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment/drug effects
6.
Biomolecules ; 11(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34572526

ABSTRACT

Garlic has long been used medicinally for many diseases, including cancer. One of the active garlic components is diallyl sulfide (DAS), which prevents carcinogenesis and reduces the incidence rate of several cancers. In this study, non-cancerous MCF-10A cells were used as a model to investigate the effect of DAS on Benzo (a)pyrene (BaP)-induced cellular carcinogenesis. The cells were evaluated based on changes in proliferation, cell cycle arrest, the formation of peroxides, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, the generation of DNA strand breaks, and DNA Polymerase ß (Pol ß) expression. The results obtained indicate that when co-treated with BaP, DAS inhibited BaP-induced cell proliferation (p < 0.05) to levels similar to the negative control. BaP treatment results in a two-fold increase in the accumulation of cells in the G2/M-phase of the cell cycle, which is restored to baseline levels, similar to untreated cells and vehicle-treated cells, when pretreated with 6 µM and 60 µM DAS, respectively. Co-treatment with DAS (60 µM and 600 µM) inhibited BaP-induced reactive oxygen species (ROS) formation by 132% and 133%, respectively, as determined by the accumulation of H2O2 in the extracellular medium and an increase in 8-OHdG levels of treated cells. All DAS concentrations inhibited BaP-induced DNA strand breaks through co-treatment and pre-treatment methods at all time points evaluated. Co-Treatment with 60 µM DAS increased DNA Pol ß expression in response to BaP-induced lipid peroxidation and oxidative DNA damage. These results indicate that DAS effectively inhibited BaP-induced cell proliferation, cell cycle transitions, ROS, and DNA damage in an MCF-10A cell line. These results provide more experimental evidence for garlic's antitumor abilities and corroborate many epidemiological studies regarding the association between the increased intake of garlic and the reduced risk of several types of cancer.


Subject(s)
Allyl Compounds/pharmacology , Breast/pathology , Carcinogenesis/metabolism , DNA Breaks, Double-Stranded , Epithelial Cells/metabolism , Reactive Oxygen Species/metabolism , Sulfides/pharmacology , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Benzo(a)pyrene , Bromodeoxyuridine/metabolism , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , DNA Polymerase beta/metabolism , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Female , Humans
7.
Cancer Genomics Proteomics ; 18(3 Suppl): 385-405, 2021.
Article in English | MEDLINE | ID: mdl-33994363

ABSTRACT

BACKGROUND/AIM: Rapid glycolytic substrate-level phosphorylation (SLP) and accumulation of lactic acid are characteristics of diverse cancers. Recent advances in drug discovery have included the use of glycolytic inhibitors with mitochondrial targeting drugs to attempt to invoke an energy crisis in aggressive metabolically active chemo-resistant cancers. In this work, we examine the consequences of inhibiting mitochondrial oxidative phosphorylation (OXPHOS) with 1-methyl-4-phenylpyridinium (MPP+) in LS14T colon cancer cells containing a genetic double knock out (DKO) of lactic acid dehydrogenase (LDHA and LDHB). MATERIALS AND METHODS: Several metabolic parameters were evaluated concomitant to whole transcriptomic (WT) mRNA, microRNA, and long intergenic non-coding RNAs using Affymetrix 2.1 human ST arrays. RESULTS: MPP+ effectively blocked OXPHOS where a compensatory shift toward anaerobic SLP was only observed in the control vector (CV), and not observed in the LDH-A/B DKOs (lacking the ability to produce lactic acid). Despite this, there was an unexpected resilience to MPP+ in the latter in terms of energy, which displayed significantly higher resting baseline respiratory OXPHOS capacity relative to controls. At the transcriptome level, MPP+ invoked 1738 differential expressed genes (DEGs) out of 48,226; LDH-A/B DKO resulted in 855 DEGs while 349 DEGs were found to be overlapping in both groups versus respective controls, including loss of mitochondrial complex I (subunits 3 and 6), cell cycle transcripts and fluctuations in epigenetic chromatin remodeling systems. In terms of energy, the effects of MPP+ in the CV transcripts reflect the funneling of carbon intermediates toward glycolysis. The LDH-A/B DKO transcripts reflect a flow of carbons away from glycolysis toward the production of acetyl-CoA. CONCLUSION: The findings from this study suggest a metabolic resilience to MPP+ in cancer cells devoid of LDH-A/B, explainable in-part by higher baseline OXPHOS respiratory ATP production, necessitating more toxin to suppress the electron transport chain.


Subject(s)
1-Methyl-4-phenylpyridinium/metabolism , Colonic Neoplasms/genetics , L-Lactate Dehydrogenase/metabolism , Colonic Neoplasms/pathology , Humans , Isoenzymes/metabolism
8.
Biomed Rep ; 14(5): 45, 2021 May.
Article in English | MEDLINE | ID: mdl-33786174

ABSTRACT

Cocaine is a highly addictive drug that mediates its effect through altering dopamine metabolism in the central nervous system (CNS), resulting in a feeling of euphoria. Owing to its high lipophilicity, cocaine easily crosses the blood brain barrier of the CNS and reaches various domains of the brain, where it can trigger cellular damage. Cocaine-induced CNS damage may arise due to increased levels of free radicals and nitric oxide (NO) in immunecompetent astroglial cells. In the present study, the potential ability of cocaine to exacerbate the production of inflammatory products, primarily superoxide free radicals (O2 -), hydrogen peroxide (H2O2) and NO/nitrite (NO2 -) was examined in rat C6 astroglia-like cells challenged with lipopolysaccharide (LPS), a bacterial endotoxin, and interferon gamma (IFNγ), a pro-inflammatory cytokine. Furthermore, the role of cocaine in increasing the expression of hypoxia inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF) in cells was also determined. First, the viability of the cells was assessed when treated with cocaine (0.5-7 mM) for 24 and 48 h. The results showed that cocaine toxicity was both time and dose-dependent. In subsequent studies, cells were challenged with or without LPS and IFNγ, followed by co-treatment with cocaine (1-4 mM) for 24 h. Cocaine treatment did not increase O2 - or H2O2 production in the challenged or unchallenged cells. Similarly, cocaine treatment did not increase NO/NO2 - production in the unchallenged cells; however, NO/NO2 - levels in the challenged cells was increased 40-50-fold upon cocaine treatment compared with the corresponding unchallenged group. The HIF-1α and VEGF levels were significantly increased in the challenged cells at higher cocaine doses compared with the unchallenged cells. Since high concentrations of NO are associated with inflammation, the high levels of NO production observed in the present study suggested that cocaine may have potentiated the inflammatory response in the challenged C6 astroglia-like cells.

9.
Nutrients ; 14(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35010954

ABSTRACT

To date, the tumor microenvironment (TME) has gained considerable attention in various areas of cancer research due to its role in driving a loss of immune surveillance and enabling rapid advanced tumor development and progression. The TME plays an integral role in driving advanced aggressive breast cancers, including triple-negative breast cancer (TNBC), a pivotal mediator for tumor cells to communicate with the surrounding cells via lymphatic and circulatory systems. Furthermore, the TME plays a significant role in all steps and stages of carcinogenesis by promoting and stimulating uncontrolled cell proliferation and protecting tumor cells from the immune system. Various cellular components of the TME work together to drive cancer processes, some of which include tumor-associated adipocytes, fibroblasts, macrophages, and neutrophils which sustain perpetual amplification and release of pro-inflammatory molecules such as cytokines. Thymoquinone (TQ), a natural chemical component from black cumin seed, is widely used traditionally and now in clinical trials for the treatment/prevention of multiple types of cancer, showing a potential to mitigate components of TME at various stages by various pathways. In this review, we focus on the role of TME in TNBC cancer progression and the effect of TQ on the TME, emphasizing their anticipated role in the prevention and treatment of TNBC. It was concluded from this review that the multiple components of the TME serve as a critical part of TNBC tumor promotion and stimulation of uncontrolled cell proliferation. Meanwhile, TQ could be a crucial compound in the prevention and progression of TNBC therapy through the modulation of the TME.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Benzoquinones/therapeutic use , Phytotherapy , Triple Negative Breast Neoplasms/prevention & control , Female , Humans , Tumor Microenvironment/drug effects
10.
J Pharm Anal ; 11(6): 799-807, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35028186

ABSTRACT

Non-small cell lung cancer (NSCLC) is often characterized by an underlying mutation in the epidermal growth factor receptor (EGFR), contributing to aggressive metastatic disease. Methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate (CDODA-Me), a glycyrrhetinic acid derivative, reportedly improves the therapeutic response to erlotinib (ERL), an EGFR tyrosine kinase inhibitor. In the present study, we performed a series of studies to demonstrate the efficacy of CDODA-Me (2 µM) in sensitizing HCC827R (ERL-resistant) cells to ERL. Herein, we first established the selectivity of ERL-induced drug resistance in the HCC827R cells, which was sensitized when ERL was combined with CDODA-Me (2 µM), shifting the IC50 from 23.48 µM to 5.46 µM. Subsequently, whole transcriptomic microarray expression data demonstrated that the combination of ERL + CDODA-Me elicited 210 downregulated genes (0.44% of the whole transcriptome (WT)) and 174 upregulated genes (0.36% of the WT), of which approximately 80% were unique to the ERL + CDODA-Me group. Synergistic effects centered on losses to cell cycle progression transcripts, a reduction of minichromosome maintenance complex components (MCM2-7), all key components of the Cdc45·MCM2-7GINS (CMG) complex, and replicative helicases; these effects were tantamount to the upregulation of processes associated with the nuclear factor erythroid 2 like 2 translational response to oxidative stress, including sulfiredoxin 1, heme oxygenase 1, and stress-induced growth inhibitor 1. Collectively, these findings indicate that the synergistic therapeutic effects of ERL + CDODA-Me on resistant NSCLC cells are mediated via the inhibition of mitosis and induction of oxidative stress.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-931225

ABSTRACT

Non-small cell lung cancer (NSCLC) is often characterized by an underlying mutation in the epidermal growth factor receptor (EGFR),contributing to aggressive metastatic disease.Methyl 2-cyano-3,11-dioxo-18beta-olean-1,12-dien-30-oate (CDODA-Me),a glycyrrhetinic acid derivative,reportedly improves the therapeutic response to erlotinib (ERL),an EGFR tyrosine kinase inhibitor.In the present study,we performed a series of studies to demonstrate the efficacy of CDODA-Me (2 μM) in sensitizing HCC827R(ERL-resistant) cells to ERL.Herein,we first established the selectivity of ERL-induced drug resistance in the HCC827R cells,which was sensitized when ERL was combined with CDODA-Me (2 μ.M),shifting the IC5o from 23.48 μM to 5.46 μM.Subsequently,whole transcriptomic microarray expression data demonstrated that the combination of ERL + CDODA-Me elicited 210 downregulated genes (0.44% of the whole transcriptome (WT)) and 174 upregulated genes (0.36% of the WT),of which approximately 80%were unique to the ERL + CDODA-Me group.Synergistic effects centered on losses to cell cycle pro-gression transcripts,a reduction of minichromosome maintenance complex components (MCM2-7),all key components of the Cdc45·MCM2-7GINS (CMG) complex,and replicative helicases;these effects were tantamount to the upregulation of processes associated with the nuclear factor erythroid 2 like 2 translational response to oxidative stress,including sulfiredoxin 1,heme oxygenase 1,and stress-induced growth inhibitor 1.Collectively,these findings indicate that the synergistic therapeutic effects of ERL +CDODA-Me on resistant NSCLC cells are mediated via the inhibition of mitosis and induction of oxidative stress.

12.
Cancer Genomics Proteomics ; 17(5): 469-497, 2020.
Article in English | MEDLINE | ID: mdl-32859627

ABSTRACT

BACKGROUND/AIM: Nearly all mammalian tumors of diverse tissues are believed to be dependent on fermentative glycolysis, marked by elevated production of lactic acid and expression of glycolytic enzymes, most notably lactic acid dehydrogenase (LDH). Therefore, there has been significant interest in developing chemotherapy drugs that selectively target various isoforms of the LDH enzyme. However, considerable questions remain as to the consequences of biological ablation of LDH or upstream targeting of the glycolytic pathway. MATERIALS AND METHODS: In this study, we explore the biochemical and whole transcriptomic effects of CRISPR-Cas9 gene knockout (KO) of lactate dehydrogenases A and B [LDHA/B double KO (DKO)] and glucose-6-phosphate isomerase (GPI KO) in the human colon cancer cell line LS174T, using Affymetrix 2.1 ST arrays. RESULTS: The metabolic biochemical profiles corroborate that relative to wild type (WT), LDHA/B DKO produced no lactic acid, (GPI KO) produced minimal lactic acid and both KOs displayed higher mitochondrial respiration, and minimal use of glucose with no loss of cell viability. These findings show a high biochemical energy efficiency as measured by ATP in glycolysis-null cells. Next, transcriptomic analysis conducted on 48,226 mRNA transcripts reflect 273 differentially expressed genes (DEGS) in the GPI KO clone set, 193 DEGS in the LDHA/B DKO clone set with 47 DEGs common to both KO clones. Glycolytic-null cells reflect up-regulation in gene transcripts typically associated with nutrient deprivation / fasting and possible use of fats for energy: thioredoxin interacting protein (TXNIP), mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), PPARγ coactivator 1α (PGC-1α), and acetyl-CoA acyltransferase 2 (ACAA2). Other changes in non-ergometric transcripts in both KOs show losses in "stemness", WNT signaling pathway, chemo/radiation resistance, retinoic acid synthesis, drug detoxification, androgen/estrogen activation, and extracellular matrix reprogramming genes. CONCLUSION: These findings demonstrate that: 1) The "Warburg effect" is dispensable, 2) loss of the LDHAB gene is not only inconsequential to viability but fosters greater mitochondrial energy, and 3) drugs that target LDHA/B are likely to be ineffective without a plausible combination second drug target.


Subject(s)
Glucose-6-Phosphate Isomerase/metabolism , L-Lactate Dehydrogenase/metabolism , Neoplasms/pathology , Warburg Effect, Oncologic , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Survival , Cytokines/genetics , Cytokines/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Glucose/metabolism , Glucose-6-Phosphate Isomerase/genetics , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/genetics , Lactic Acid/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Oligonucleotide Array Sequence Analysis
13.
Sci Rep ; 9(1): 9412, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253835

ABSTRACT

Methamphetamine (METH) is a powerfully addictive psychostimulant that has a pronounced effect on the central nervous system (CNS). The present study aimed to assess METH toxicity in differentiated C6 astroglia-like cells through biochemical and toxicity markers with acute (1 h) and chronic (48 h) treatments. In the absence of external stimulants, cellular differentiation of neuronal morphology was achieved through reduced serum (2.5%) in the medium. The cells displayed branched neurite-like processes with extensive intercellular connections. Results indicated that acute METH treatment neither altered the cell morphology nor killed the cells, which echoed with lack of consequence on reactive oxygen species (ROS), nitric oxide (NO) or inhibition of any cell cycle phases except induction of cytoplasmic vacuoles. On the other hand, chronic treatment at 1 mM or above destroyed the neurite-like processors and decreased the cell viability that paralleled with increased levels of ROS, lipid peroxidation and lactate, depletion in glutathione (GSH) level and inhibition at G0/G1 phase of cell cycle, leading to apoptosis. Pre-treatment of cells with N-acetyl cysteine (NAC, 2.5 mM for 1 h) followed by METH co-treatment for 48 h rescued the cells completely from toxicity by decreasing ROS through increased GSH. Our results provide evidence that increased ROS and GSH depletion underlie the cytotoxic effects of METH in the cells. Since loss in neurite connections and intracellular changes can lead to psychiatric illnesses in drug users, the evidence that we show in our study suggests that these are also contributing factors for psychiatric-illnesses in METH addicts.


Subject(s)
Astrocytes/drug effects , Astrocytes/metabolism , Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Animals , Apoptosis/drug effects , Biomarkers , Cell Line , Cell Survival/drug effects , Central Nervous System Stimulants/toxicity , Glutathione/metabolism , Lipid Peroxidation/drug effects , Methamphetamine/toxicity , Rats , Reactive Oxygen Species/metabolism , Resting Phase, Cell Cycle/drug effects , Time Factors
14.
Cell Death Discov ; 4: 13, 2018.
Article in English | MEDLINE | ID: mdl-30210816

ABSTRACT

Cocaine is a highly abused drug that causes psychiatric and neurological problems. Its entry into neurons could alter cell-biochemistry and contribute in the manifestation of early pathological symptoms. We have previously shown the acute cocaine effects in rat C6 astroglia-like cells and found that these cells were highly sensitive to cocaine in terms of manifesting certain pathologies known to underlie psychological disorders. The present study was aimed to discern acute cocaine effects on the early onset of various changes in Neuro-2a (N2a) cells. Whole-cell patch-clamp recording of differentiated cells displayed the functional voltage-gated Na+ and K+ channels, which demonstrated the neuronal characteristics of the cells. Treatment of these cells with acute cocaine (1 h) at in vivo (nM to µM) and in vitro (mM) concentrations revealed that the cells remained almost 100% viable. Cocaine administration at 6.25 µM or 4 mM doses significantly reduced the inward currents but had no significant effect on outward currents, indicating the Na+ channel-blocking activity of cocaine. While no morphological change was observed at in vivo doses, treatment at in vitro doses altered the morphology, damaged the neurites, and induced cytoplasmic vacuoles; furthermore, general mitochondrial activity and membrane potential were significantly decreased. Mitochondrial dysfunction enabled the cells switch to anaerobic glycolysis, evidenced by dose-dependent increases in lactate and H2S, resulting unaltered ATP level in the cells. Further investigation on the mechanism of action unfolded that the cell's resistance to cocaine was through the activation of nuclear factor E2-related factor-2 (Nrf-2) gene and subsequent increase of antioxidants (glutathione [GSH], catalase and GSH peroxidase [GPx]). The data clearly indicate that the cells employed a detoxifying strategy against cocaine. On a broader perspective, we envision that extrapolating the knowledge of neuronal resistance to central nervous system (CNS) diseases could delay their onset or progression.

15.
Sci Rep ; 8(1): 2710, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426863

ABSTRACT

Cocaine is one of the powerful addictive drugs, widely abused in most Western countries. Because of high lipophilic nature, cocaine easily reaches various domains of the central nervous system (CNS) and triggers different levels of cellular toxicity. The aim of this investigation was to reproduce cocaine toxicity in differentiated PC12 cells through quantitative knowledge on biochemical and cytotoxicity markers. We differentiated the cells with 0.1 µg/ml nerve growth factor (NGF) for 5 days, followed by treatment with cocaine for 48 h at in vivo and in vitro concentrations. Results indicated that cocaine at in vivo concentrations neither killed the cells nor altered the morphology, but decreased the mitochondrial membrane potential that paralleled with increased lactate and glutathione (GSH) levels. On the other hand, cocaine at in vitro concentrations damaged the neurites and caused cell death, which corresponded with increased reactive oxygen species (ROS) generation, plasma membrane damage, and GSH depletion with no detectable nitric oxide (NO) level. While direct understanding of cocaine and cell interaction under in vivo animal models is impeded due to high complexity, our present in vitro results assisted in understanding the onset of some key events of neurodegenerative diseases in cocaine treated neuronal cells.


Subject(s)
Cocaine/toxicity , Neurites/drug effects , Neurons/drug effects , Animals , Cell Survival , Glutathione/metabolism , Lactic Acid/metabolism , Membrane Potential, Mitochondrial/drug effects , Nerve Growth Factor/chemistry , Neurites/metabolism , Neurons/metabolism , Nitric Oxide/metabolism , PC12 Cells , Rats , Reactive Oxygen Species/metabolism
16.
Anticancer Res ; 36(10): 5043-5052, 2016 10.
Article in English | MEDLINE | ID: mdl-27798863

ABSTRACT

Triple-negative breast cancer (TNBC) occurs at greater frequency amongst African-Americans, being characterized by the absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal receptor 2 (HER2). TNBC is often invasive and typically treated with cytostatic agents such as taxanes in combination with anthracyclines or platinum-based drugs. In this study, we synthesized a number of tetrahydroisoquinoline moieties by N-amination of substituted isoquinolines by O-mesytelene sulfonylhydroxylamine followed by ylide formation and reduction, which yielded the desired, substituted tetrahydroisoquinolines (THIQs) in moderate to good yield. Using a differential scatter plot to identify potential selective ER-modulating drugs in ER-positive control cells (MCF-7) driven by estradiol vs. TNBC (MDA-MB-231) cells, the in vitro data showed an absence of effects on the ER (compared to 4-hydroxytamoxifen and raloxifene). In contrast, two lead compounds halted proliferation (cytostatic) in MDA-MB-231 TNBC cells at a potency level below 2.5 µM concomitant with mitotic arrest, attenuated replicative DNA synthesis, halted microtubule nucleation/stunted tubulin polymerization, abnormal expansive cytoskeletal tubulin and actin morphologies with multinucleation of cells. The most effective cytostatic compounds GM-4-53 and GM-3-121 blocked replicative processes at the G2 growth phase. These findings suggest that specific THIQs work independently of the ER, by holding static the microtubule network thereby preventing mitosis. Future work is required to establish the safety and efficacy of these drugs and their potential adjunct therapeutic gain in the presence of taxanes in TNBC.


Subject(s)
Antineoplastic Agents/pharmacology , Microtubules/drug effects , Tetrahydroisoquinolines/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Polymerization/drug effects , Triple Negative Breast Neoplasms/drug therapy , Tubulin/metabolism
17.
Environ Toxicol ; 31(11): 1612-1619, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26138014

ABSTRACT

Cadmium (Cd), is one of the most hazardous metals found in the environment. Cd exposure through inhalation has been linked to various diseases in lungs. It was shown that Cd induces proinflammatory cytokines through oxidative stress mechanism. In this report, we studied the immunomodulatory effect of a well known antioxidant, N-acetylcysteine (NAC) on cadmium chloride (CdCl2 ) treated human lung A549 cells through human cytokine array 6. The lung cells were treated with 0 or 75 µM CdCl2 alone, 2.5 mM NAC alone, or co-treated with 2.5 mM NAC and 75 µM CdCl2 for 24 h. The viability of cells was measured by crystal violet dye. The array results were validated by human IL-1alpha enzyme- linked immunosorbent assay (ELISA) kit. The viability of the 75 µM CdCl2 alone treated cells was decreased to 44.5%, while the viability of the co-treated cells with 2.5 mM NAC was increased to 84.1% in comparison with untreated cells. In the cell lysate of CdCl2 alone treated cells, 19 and 8 cytokines were up and down-regulated, while in the medium 15 and 3 cytokines were up and downregulated in comparison with the untreated cells. In the co-treated cells, all these cytokines expression was modulated by the NAC treatment. The IL-1α ELISA result showed the same pattern of cytokine expression as the cytokine array. This study clearly showed the modulatory effect of NAC on cytokines and chemokines expression in CdCl2- treated cells and suggests the use of NAC as protective agent against cadmium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1612-1619, 2016.


Subject(s)
Acetylcysteine/pharmacology , Cadmium Chloride/toxicity , Lung/drug effects , Animals , Cell Survival/drug effects , Chemokines/analysis , Cytokines/analysis , Humans , Interleukin-1alpha/analysis , Lung/immunology , Protective Agents/pharmacology
18.
Mol Med Rep ; 12(5): 6422-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26397147

ABSTRACT

Cadmium is an environmentally hazardous metal, which causes toxicity in humans. Inhalation of cigarette smoke and industrial fumes containing cadmium are sources of cadmium exposure. It is responsible for the malfunction of various organs, leading to disease particularly in the lungs, liver and kidneys. In the present study, the effect of cadmium chloride (CdCl2) on cell viability, and the expression levels of interleukin (IL)­1α and IL­10 cytokines at various concentrations and incubation durations were assessed in MRC­9 human normal lung and A549 human lung cancer cells to elucidate the mechanism of cadmium toxicity. Cell viability was measured using a crystal violet dye binding assay. The expression levels of the cytokines were measured by cytokine specific enzyme­linked immunosorbent assay kits. The viability assay results revealed higher sensitivity of the A549 lung cancer cells to CdCl2 compared with the normal MRC­9 lung cells. In the normal MRC­9 lung cells, higher expression levels of the cytokines were observed at the lowest CdCl2 concentration at a shorter exposure time compared with the lung cancer cells. Higher levels of the cytokines were observed in the A549 lung cancer cells at all other times and concentrations compared with the MRC­9 cells, indicating higher levels of inflammation. The cytokine levels were reduced at higher CdCl2 concentrations and longer exposure durations, demonstrating the toxic effect of cadmium. The results indicated that CdCl2 affected the expression levels of the cytokines and led to cytotoxicity in human lung cells, and suggested that compounds which reduce inflammation may prevent cadmium toxicity.


Subject(s)
Cadmium Chloride/toxicity , Epithelial Cells/drug effects , Interleukin-10/genetics , Interleukin-1alpha/genetics , Water Pollutants, Chemical/toxicity , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression/drug effects , Humans , Interleukin-10/immunology , Interleukin-1alpha/immunology , Organ Specificity , Respiratory Mucosa/cytology , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Time Factors
19.
PLoS One ; 10(1): e0114285, 2015.
Article in English | MEDLINE | ID: mdl-25617894

ABSTRACT

Cocaine has a short half-life of only about an hour but its effects, predominantly on the central nervous system (CNS), are fairly long-lasting. Of all cells within the CNS, astrocytes may be the first to display cocaine toxicity owing to their relative abundance in the brain. Cocaine entry could trigger several early response changes that adversely affect their survival, and inhibiting these changes could conversely increase their rate of survival. In order to identify these changes and the minimal concentrations of cocaine that can elicit them in vitro, rat C6 astroglia-like cells were treated with cocaine (2-4 mM for 1h) and assayed for alterations in gross cell morphology, cytoplasmic vacuolation, viability, reactive oxygen species (ROS) generation, glutathione (GSH) levels, cell membrane integrity, F-actin cytoskeleton, and histone methylation. We report here that all of the above identified features are significantly altered by cocaine, and may collectively represent the key pathology underlying acute toxicity-mediated death of astroglia-like cells. Pretreatment of the cells with the clinically available antioxidant N-acetyl cysteine (NAC, 5 mM for 30 min) inhibited these changes during subsequent application of cocaine and mitigated cocaine-induced toxicity. Despite repeated cocaine exposure, NAC pretreated cells remained highly viable and post NAC treatment also increased viability of cocaine treated cells to a smaller yet significant level. We show further that this alleviation by NAC is mediated through an increase in GSH levels in the cells. These findings, coupled with the fact that astrocytes maintain neuronal integrity, suggest that compounds which target and mitigate these early toxic changes in astrocytes could have a potentially broad therapeutic role in cocaine-induced CNS damage.


Subject(s)
Acetylcysteine/pharmacology , Antioxidants/pharmacology , Astrocytes/drug effects , Cocaine/toxicity , Animals , Cell Line , Cell Membrane/drug effects , Cell Survival/drug effects , Cytoskeleton/drug effects , Glutathione/metabolism , Histones/drug effects , Methylation , Rats , Reactive Oxygen Species/metabolism
20.
Environ Toxicol ; 30(6): 704-11, 2015.
Article in English | MEDLINE | ID: mdl-24420767

ABSTRACT

Cadmium is commercially profitable element, but it causes toxicity in humans and animals leading to diseases in various organs. The main route of cadmium exposure to humans is through inhalation. Lungs respond to insult through secretion of cytokines. In this study, the chemoprotective effect of monoisoamyl 2, 3-dimercaptosuccinate (MiADMS) was evaluated on viability and cytokines expression in CdCl2 treated human lung A549 cells by cytokine array. Cells were treated with 0, 50, 75, and 100 µM CdCl2 alone, 300 µM MiADMS alone, and co-treated with 300 µM MiADMS and 75 µM CdCl2 for 24 h. The viability was measured by crystal violet dye. The level of cytokines in the cells' lysate and cell culture medium was measured using Ray Biotech's Human Cytokine Array 6 in control cells, 75 µM CdCl2 alone and MiADMS co-treated cells. Array results were validated by ELISA kit. The CdCl2 caused a dose dependent decrease in cell viability, while MiADMS co-treatment resulted in a significant increase in viability of CdCl2 treated cells. Morphology of the cells treated with CdCl2 was destroyed, while MiADMS restored the lost shape in CdCl2 treated cells. In addition, the cells co-treated with MiADMS and CdCl2 showed modulation of cytokines expression in comparison to the CdCl2 alone treated cells. The ELISA results showed the similar pattern of cytokine expression as Human Cytokine Array and validated the array results. These results clearly show the chemoprotective effect of MiADMS and suggest that MiADMS can be used as antidote at moderate dose against CdCl2 toxicity.


Subject(s)
Cadmium Chloride/antagonists & inhibitors , Cadmium Chloride/toxicity , Cytokines/metabolism , Lung Diseases/pathology , Lung Diseases/prevention & control , Protective Agents/pharmacology , Succimer/analogs & derivatives , Cadmium/toxicity , Cell Line , Cell Survival/drug effects , Down-Regulation/drug effects , Humans , Lung/pathology , Lung Diseases/metabolism , Succimer/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...