Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Obes (Lond) ; 38(11): 1449-56, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24566853

ABSTRACT

BACKGROUND: Stearoyl-CoA desaturase-1 (SCD1) is rate limiting for the conversion of saturated fatty acids palmitate (16:0) and stearate (18:0) to monounsaturated fatty acids palmitoleate (16:1n7) and oleate (18:1n9), respectively. Given that reduced SCD1 activity is associated with improved insulin sensitivity and decreased body weight, there is considerable interest to elucidate the role of this enzyme in adipocytes. During adipogenesis, SCD1 levels increase concomitantly with the accumulation of triacylglycerol (TG); however, the extent to which reduced SCD1 activity can influence TG synthesis and metabolic pathways in differentiating adipocytes remains relatively unexplored. OBJECTIVE: The aim of this work was to delineate how reduced SCD1 activity affects gene expression, protein content and cellular fatty acids in differentiating murine preadipocytes. METHODS: 3T3-L1 preadipocytes were treated with an SCD1 inhibitor (10 nM) throughout differentiation. After 7 days, global gene expression, protein content and fatty acid profiles were examined using microarrays, western blotting and gas chromatography, respectively. RESULTS: SCD1 inhibition increased the abundance of 16:0 and 18:0 (45% and 194%, respectively) and decreased 16:1n7 and 18:1n7 (61% and 35%, respectively) in differentiated preadipocytes. Interestingly, 18:1n9 levels increased by 61%. The augmented 18:0 suggested a possible increase in elongase activity. Elongase 6 (Elovl6) gene expression was increased 2.8-fold (P = 0.04); however, changes were not detected for ELOVL6 protein content. Microarray analysis revealed that genes affecting TG synthesis were downregulated with SCD1 inhibition, which coincided with a 33% decrease in cellular TG content. CONCLUSION: These results provide new mechanistic insight into the role of SCD1 as a regulator of fatty acid profiles and TG synthesis in adipocytes, and reinforce that modulating SCD1 activity may help reduce the risk of obesity-related complications.


Subject(s)
3T3-L1 Cells/enzymology , Acetyltransferases/metabolism , Adipocytes/metabolism , Fatty Acids, Monounsaturated/metabolism , Stearoyl-CoA Desaturase/antagonists & inhibitors , Stearoyl-CoA Desaturase/metabolism , Triglycerides/biosynthesis , Animals , Blotting, Western , Cell Differentiation , Cells, Cultured , Chromatography, Gas , Down-Regulation , Fatty Acid Elongases , Fatty Acids/metabolism , Gene Expression Regulation, Enzymologic , Mice , Tissue Array Analysis , Up-Regulation
2.
J Steroid Biochem Mol Biol ; 138: 222-35, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23796409

ABSTRACT

The screening of testosterone (T) misuse for doping control is based on the urinary steroid profile, including T, its precursors and metabolites. Modifications of individual levels and ratio between those metabolites are indicators of T misuse. In the context of screening analysis, the most discriminant criterion known to date is based on the T glucuronide (TG) to epitestosterone glucuronide (EG) ratio (TG/EG). Following the World Anti-Doping Agency (WADA) recommendations, there is suspicion of T misuse when the ratio reaches 4 or beyond. While this marker remains very sensitive and specific, it suffers from large inter-individual variability, with important influence of enzyme polymorphisms. Moreover, use of low dose or topical administration forms makes the screening of endogenous steroids difficult while the detection window no longer suits the doping habit. As reference limits are estimated on the basis of population studies, which encompass inter-individual and inter-ethnic variability, new strategies including individual threshold monitoring and alternative biomarkers were proposed to detect T misuse. The purpose of this study was to evaluate the potential of ultra-high pressure liquid chromatography (UHPLC) coupled with a new generation high resolution quadrupole time-of-flight mass spectrometer (QTOF-MS) to investigate the steroid metabolism after transdermal and oral T administration. An approach was developed to quantify 12 targeted urinary steroids as direct glucuro- and sulfo-conjugated metabolites, allowing the conservation of the phase II metabolism information, reflecting genetic and environmental influences. The UHPLC-QTOF-MS(E) platform was applied to clinical study samples from 19 healthy male volunteers, having different genotypes for the UGT2B17 enzyme responsible for the glucuroconjugation of T. Based on reference population ranges, none of the traditional markers of T misuse could detect doping after topical administration of T, while the detection window was short after oral TU ingestion. The detection ability of the 12 targeted steroids was thus evaluated by using individual thresholds following both transdermal and oral administration. Other relevant biomarkers and minor metabolites were studied for complementary information to the steroid profile, including sulfoconjugated analytes and hydroxy forms of glucuroconjugated metabolites. While sulfoconjugated steroids may provide helpful screening information for individuals with homozygotous UGT2B17 deletion, hydroxy-glucuroconjugated analytes could enhance the detection window of oral T undecanoate (TU) doping.


Subject(s)
Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Testosterone/administration & dosage , Testosterone/pharmacokinetics , Administration, Cutaneous , Administration, Oral , Adult , Humans , Male , Young Adult
3.
J Chromatogr A ; 1217(25): 4109-19, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-19939397

ABSTRACT

For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine.


Subject(s)
Anabolic Agents/urine , Chromatography, High Pressure Liquid/methods , Doping in Sports/prevention & control , Mass Spectrometry/methods , Substance Abuse Detection/methods , Humans
4.
J Chromatogr A ; 1216(20): 4423-33, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19342059

ABSTRACT

The general strategy to perform anti-doping analyses of urine samples starts with the screening for a wide range of compounds. This step should be fast, generic and able to detect any sample that may contain a prohibited substance while avoiding false negatives and reducing false positive results. The experiments presented in this work were based on ultra-high-pressure liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry. Thanks to the high sensitivity of the method, urine samples could be diluted 2-fold prior to injection. One hundred and three forbidden substances from various classes (such as stimulants, diuretics, narcotics, anti-estrogens) were analysed on a C(18) reversed-phase column in two gradients of 9min (including two 3min equilibration periods) for positive and negative electrospray ionisation and detected in the MS full scan mode. The automatic identification of analytes was based on retention time and mass accuracy, with an automated tool for peak picking. The method was validated according to the International Standard for Laboratories described in the World Anti-Doping Code and was selective enough to comply with the World Anti-Doping Agency recommendations. In addition, the matrix effect on MS response was measured on all investigated analytes spiked in urine samples. The limits of detection ranged from 1 to 500ng/mL, allowing the identification of all tested compounds in urine. When a sample was reported positive during the screening, a fast additional pre-confirmatory step was performed to reduce the number of confirmatory analyses.


Subject(s)
Chromatography, High Pressure Liquid/methods , Doping in Sports , Mass Spectrometry/methods , Substance Abuse Detection/methods , Urine/chemistry , Diuretics/urine , Narcotics/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...