Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pestic Biochem Physiol ; 194: 105492, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532318

ABSTRACT

Nanomaterials have been produced with the use of bio-nanotechnology, which is a low-cost approach. Currently, research is being conducted to determine whether actinomycetes isolated from Egyptian soil can biosynthesize Ag nanoparticles (Ag NPs) and characterized by using the following techniques: Transmission electron microscopy (TEM), Dynamic light scattering (DLS), Fourier transforms infrared (FT-IR), Energy-dispersive X-ray spectroscopy (EDX), UV-Vis spectroscopy and X-ray diffraction (XRD). The most promising actinomycetes isolate were identified, morphologically, biochemically, and molecularly. Streptomyces avermitilis Azhar A.4 was found to be able to reduce silver metal nanoparticles from silver nitrate in nine isolates collected from Egyptian soil. Toxicity of biosynthesized against 2nd and 4th larval instar of Agrotis ipsilon (Hufn.) (Lepidoptera: Noctuidae) was estimated. In addition, activity of certain vital antioxidant and detoxifying enzymes as well as midgut histology of treated larvae were also investigated. The results showed appositive correlations between larval mortality percentage (y) and bio-AgNPs concentrations (x) with excellent (R2). The 4th larval instar was more susceptible than 2nd larval instar with LC50 (with 95% confirmed limits) =8.61 (2.76-13.89) and 26.44(13.25-35.58) ppml-1, respectively of 5 days from treatment. The initial stages of biosynthesized AgNps exposure showed significant increases in carboxylesterase (CarE) and peroxidases (PODs) activity followed by significant suppression after 5 days pos-exposure. While protease activity was significantly decreased by increasing time post-exposure. Midgut histology showed abnormality and progressive damage by increasing time post exposure leading to complete destruction of midgut cells after 5 days from exposure. These results make biosynthesized AgNPs an appropriate alternative to chemical insecticide in A. ipsilon management.


Subject(s)
Actinobacteria , Metal Nanoparticles , Animals , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Actinomyces , Spectroscopy, Fourier Transform Infrared , Silver/toxicity , Larva , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology
2.
J Funct Biomater ; 13(3)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36135592

ABSTRACT

The aqueous extract of Portulaca oleracea was used as a biocatalyst for the reduction of Na2SeO3 to form Se-NPs that appeared red in color and showed maximum surface plasmon resonance at a wavelength of 266 nm, indicating the successful Phyto-fabrication of Se-NPs. A FT-IR chart clarified the role of plant metabolites such as proteins, carbohydrates, and amino acids in capping and stabilizing Se-NPs. TEM, SAED, and XRD analyses indicated the formation of spherical, well-arranged, and crystalline Se-NPs with sizes in the range of 2-22 nm. SEM-EDX mapping showed the maximum peaks of Se at 1.4, 11.3, and 12.4 KeV, with weight and atomic percentages of 36.49 and 30.39%, respectively. A zeta potential of -43.8 mV also indicated the high stability of the synthesized Se-NPs. The Phyto-synthesized Se-NPs showed varied biological activities in a dose-dependent manner, including promising activity against pathogenic bacteria and Candida species with varied MIC values in the range of 12.5-50 µg·mL-1. Moreover, the Se-NPs showed antiviral activity toward HAV and Cox-B4, with percentages of 70.26 and 62.58%, respectively. Interestingly, Se-NPs showed a target orientation to cancer cell lines (HepG2) with low IC50 concentration at 70.79 ± 2.2 µg·mL-1 compared to normal cell lines (WI-38) with IC50 at165.5 ± 5.4 µg·mL-1. Moreover, the as-formed Se-NPs showed high activity against various instar larvae I, II, III, and IV of Culex pipiens, with the highest mortality percentages of 89 ± 3.1, 73 ± 1.2, 68 ± 1.4, and 59 ± 1.0%, respectively, at 50 mg L-1. Thus, P. oleracea-based Se-NPs would be strong potential antimicrobial, anti-viral, anti-cancer, and anti-insect agents in the pharmaceutical and biomedical industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...