Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 269: 116302, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38484678

ABSTRACT

The relentless pursuit of novel therapeutic agents against cancer has led to the identification of multiple molecular targets, among which Sirtuin 2 (SIRT2) has garnered significant attention. This study presents an extensive SAR study of our reported trityl scaffold-based SIRT2 inhibitors. This study encompasses a range of different medicinal chemistry approaches to improve the activity of the lead compounds TH-3 and STCY1. The rationally designed and synthesized structures were confirmed using NMR and high-resolution mass spectroscopy before performing SIRT2 inhibition assay, NCI60 cytotoxicity test, and cell cycle analysis. Indeed, our strategies afforded hitherto unreported SIRT2 inhibitors with high activity, particularly 2a, 4a, 7c, and 7f. Remarkably, the presence of a lipophilic para substitution on the phenyl group of a freely rotating or a locked trityl moiety enhanced activity SIRT2 inhibition. Concomitantly, the synthesized compounds showed prominent activity against different cancer lines from the NCI60 assay. Of interest, compound 7c stands out as a potent and highly selective antiproliferative agent against leukemia and colon cancer panels. Furthermore, 7c treatment resulted in cell cycle arrest in MCF-7 cells at G2 phase and did not cause in vitro DNA cleavage.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Structure-Activity Relationship , Sirtuin 2 , Histamine , Cysteamine , Ligands , Antineoplastic Agents/chemistry , Molecular Structure , Cell Proliferation , Drug Screening Assays, Antitumor
2.
Arch Pharm (Weinheim) ; 356(10): e2300208, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37462396

ABSTRACT

Histone deacetylase (HDAC) inhibitors are well-established multifaceted bioactive agents against tumors and neurodegenerative disorders. Pyrimidine and its fused and substituted derivatives were employed as a surface recognition moiety of HDAC inhibitors. De facto, the literature was loaded with different success stories of pyrimidine-based HDAC inhibitors that garnered much interest. Provoked by our continuous interest in HDAC inhibitors, we summarized and elaborated on the successful harnessing of the pyrimidine scaffold in this regard. Furthermore, we dissect our perspective that may guide medicinal chemists for an effective future design of more active chemotherapeutic agents with potential clinical applications.


Subject(s)
Antineoplastic Agents , Histone Deacetylase Inhibitors , Histone Deacetylase Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Histone Deacetylases/metabolism , Histone Deacetylases/pharmacology , Cell Proliferation , Pyrimidines/pharmacology , Histone Deacetylase 1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...