Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 31(9): 1944-1950, 2017 09.
Article in English | MEDLINE | ID: mdl-28626220

ABSTRACT

The use of darbepoetin alfa to treat anemia in patients with lower-risk myelodysplastic syndromes (MDS) was evaluated in a phase 3 trial. Eligible patients had low/intermediate-1 risk MDS, hemoglobin ⩽10 g/dl, low transfusion burden and serum erythropoietin (EPO) ⩽500 mU/ml. Patients were randomized 2:1 to receive 24 weeks of subcutaneous darbepoetin alfa 500 µg or placebo every 3 weeks (Q3W), followed by 48 weeks of open-label darbepoetin alfa. A total of 147 patients were randomized, with median hemoglobin of 9.3 (Q1:8.8, Q3:9.7) g/dl and median baseline serum EPO of 69 (Q1:36, Q3:158) mU/ml. Transfusion incidence from weeks 5-24 was significantly lower with darbepoetin alfa versus placebo (36.1% (35/97) versus 59.2% (29/49), P=0.008) and erythroid response rates increased significantly with darbepoetin alfa (14.7% (11/75 evaluable) versus 0% (0/35 evaluable), P=0.016). In the 48-week open-label period, dose frequency increased from Q3W to Q2W in 81% (102/126) of patients; this was associated with a higher hematologic improvement-erythroid response rate (34.7% (34/98)). Safety results were consistent with a previous darbepoetin alfa phase 2 MDS trial. In conclusion, 24 weeks of darbepoetin alfa Q3W significantly reduced transfusions and increased rates of erythroid response with no new safety signals in lower-risk MDS (registered as EudraCT#2009-016522-14 and NCT#01362140).


Subject(s)
Anemia/drug therapy , Darbepoetin alfa/administration & dosage , Myelodysplastic Syndromes/complications , Aged , Aged, 80 and over , Blood Transfusion , Darbepoetin alfa/therapeutic use , Erythropoietin/blood , Female , Hemoglobins/analysis , Humans , Male , Risk
2.
J Neuroendocrinol ; 10(12): 897-903, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9870746

ABSTRACT

Previous studies demonstrated that the increase in vasopressin (VP) release and induction of VPmRNA content by osmotic stimulation was blocked by kynurenic acid, a non-specific antagonist of excitatory amino acid (EAA) receptors. In order to identify the type of EAA receptor involved, perifused explants of the hypothalamo-neurohypophyseal system (HNS) were exposed to a ramp increase in osmolality (40 mOsm over 6 h achieved by increasing NaCl) in the presence and absence of 10 microM 6,7-dinitroquinoxaline-2,3-dione (DNQX), an antagonist of non-n-methyl-d-aspartate (NMDA) excitatory amino acid receptors. Vasopressin release and VP mRNA content were significantly increased by exposure to the osmotic stimulus. 6,7-dinitroquinoxaline-2,3-dione inhibited osmotically stimulated VP release (F=16.65, P=0.0008) without significantly reducing basal release. It also prevented the osmotically stimulated increase in VP mRNA content (P <0.05). Although these results implicated glutamate, the primary endogenous ligand for EAA receptors, in the regulation of VP, exogenous glutamate was ineffective in stimulating VP release from HNS explants in either low-Mg2+ or Mg2+-replete medium. However, blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor desensitization with cyclothiazide (100 microM) caused a marked increase in VP release in response to 100 microM glutamate, and blockade of kainate receptor desensitization with concanavalin A resulted in a small, but significant increase in VP release in response to 1 mM glutamate. These results support a role for non-NMDA receptor activation in osmotic regulation of VP release.


Subject(s)
Down-Regulation/drug effects , Glutamic Acid/pharmacology , Receptors, Glutamate/physiology , Sodium Chloride/pharmacology , Vasopressins/metabolism , Animals , Benzothiadiazines/pharmacology , Concanavalin A/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiology , In Vitro Techniques , Magnesium/pharmacology , Male , Osmolar Concentration , Quinoxalines/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, AMPA/antagonists & inhibitors , Receptors, AMPA/physiology , Receptors, Kainic Acid/antagonists & inhibitors , Receptors, Kainic Acid/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Sodium Chloride/antagonists & inhibitors , Vasopressins/genetics
3.
J Neuroendocrinol ; 10(9): 679-85, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9744485

ABSTRACT

Previous experiments demonstrated that excitatory amino acids participate in the osmotic regulation of vasopressin secretion, but the specific involvement of N-methyl-D-aspartic acid (NMDA) receptors was not evaluated. This was demonstrated in the present studies. NMDA stimulated vasopressin release from perifused explants of the hypothalamo-neurohypophyseal system (HNS), and osmotic stimulation of vasopressin release was inhibited by MK-801 (10 microM) and AP5 (100 microM) NMDA receptor antagonists. The effective concentration of NMDA was dependent upon the Mg2+ concentration of the perifusate with stimulation observed at 1 microM NMDA in Mg2+-replete compared with 5 microM in low-Mg2+ medium. Previous experiments also demonstrated that estradiol and dihydrotestosterone (DHT) inhibited osmotically stimulated vasopressin secretion, and a nongenomic mechanism of action was suggested by the ability of steroids conjugated to bovine serum albumin to replicate the effect. Experiments were performed to explore the potential role of NMDA receptors in this mechanism. Estradiol (50 pg/ml) and DHT (3 ng/ml) inhibited NMDA stimulated vasopressin release in perifused HNS explants. These results suggest a role of NMDA receptors in the mediation of vasopressin secretion in osmotically stimulated release. Furthermore, estradiol and DHT may exert their inhibitory effect on osmotically stimulated vasopressin release via the NMDA receptor.


Subject(s)
Dihydrotestosterone/pharmacology , Estradiol/pharmacology , N-Methylaspartate/pharmacology , Vasopressins/metabolism , Animals , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Magnesium/pharmacology , Male , N-Methylaspartate/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Vasopressins/antagonists & inhibitors , Water-Electrolyte Balance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...