Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Genome Biol ; 8(12): R262, 2007.
Article in English | MEDLINE | ID: mdl-18067683

ABSTRACT

BACKGROUND: Several interventions increase lifespan in model organisms, including reduced insulin/insulin-like growth factor-like signaling (IIS), FOXO transcription factor activation, dietary restriction, and superoxide dismutase (SOD) over-expression. One question is whether these manipulations function through different mechanisms, or whether they intersect on common processes affecting aging. RESULTS: A doxycycline-regulated system was used to over-express manganese-SOD (MnSOD) in adult Drosophila, yielding increases in mean and maximal lifespan of 20%. Increased lifespan resulted from lowered initial mortality rate and required MnSOD over-expression in the adult. Transcriptional profiling indicated that the expression of specific genes was altered by MnSOD in a manner opposite to their pattern during normal aging, revealing a set of candidate biomarkers of aging enriched for carbohydrate metabolism and electron transport genes and suggesting a true delay in physiological aging, rather than a novel phenotype. Strikingly, cross-dataset comparisons indicated that the pattern of gene expression caused by MnSOD was similar to that observed in long-lived Caenorhabditis elegans insulin-like signaling mutants and to the xenobiotic stress response, thus exposing potential conserved longevity promoting genes and implicating detoxification in Drosophila longevity. CONCLUSION: The data suggest that MnSOD up-regulation and a retrograde signal of reactive oxygen species from the mitochondria normally function as an intermediate step in the extension of lifespan caused by reduced insulin-like signaling in various species. The results implicate a species-conserved net of coordinated genes that affect the rate of senescence by modulating energetic efficiency, purine biosynthesis, apoptotic pathways, endocrine signals, and the detoxification and excretion of metabolites.


Subject(s)
Aging/genetics , Drosophila melanogaster/physiology , Gene Expression Profiling , Superoxide Dismutase/physiology , Animals , Animals, Genetically Modified , Carbohydrate Metabolism , Electron Transport , Female , Longevity , Male , Superoxide Dismutase/genetics
3.
Exp Gerontol ; 42(6): 483-97, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17349761

ABSTRACT

The conditional systems Tet-on and Geneswitch were compared and optimized for the tissue-specific expression of transgenes and manipulation of life span in adult Drosophila. Two versions of Tet-on system reverse-tetracycline-Trans-Activator (rtTA) were compared: the original rtTA, and rtTAM2-alt containing mutations designed to optimize regulation and expression. The rtTAM2-alt version gave less leaky expression of target constructs in the absence of doxycyline, however the absolute level of expression that could be achieved was less than that produced by rtTA, in contrast to a previous report. Existing UAS-rtTAM2-alt insertions were re-balanced, and combined with several tissue-general and tissue-specific GAL4 driver lines to yield tissue-specific, doxycyline-inducible transgene expression over three orders of magnitude. The Geneswitch (GS) system also had low background, but the absolute level of expression was low relative to Tet-on. Consequently, actin5C-GS multi-insert chromosomes were generated and higher-level expression was achieved without increased background. Moderate level over-expression of MnSOD has beneficial effects on life span. Here high-level over-expression of MnSOD was found to have toxic effects. In contrast, motor-neuron-specific over-expression of MnSOD had no detectable effect on life span. The results suggest that motor-neuron tissue is not the essential tissue for either MnSOD induced longevity or toxicity in adult males.


Subject(s)
Drosophila melanogaster/genetics , Longevity/genetics , Animals , Animals, Genetically Modified/metabolism , Doxycycline/pharmacology , Drosophila melanogaster/drug effects , Female , Gene Expression/drug effects , Genetic Techniques , Lac Operon/drug effects , Longevity/drug effects , Male , Mifepristone/pharmacology , Mutation , Nervous System/metabolism , Superoxide Dismutase/genetics
4.
Dev Biol ; 258(1): 70-5, 2003 Jun 01.
Article in English | MEDLINE | ID: mdl-12781683

ABSTRACT

We compared the redistribution of mitochondria in the early embryos of Caenorhabditis elegans (C. elegans) and Acrobeloides sp. PS1146 (Acrobeloides)--two nematode species where the mechanisms for embryonic axis specification are different even though subsequent development is remarkably similar. During the first cell cycle of C. elegans, mitochondria move with the bulk cytoplasmic flows that are directed toward the sperm pronucleus and aggregate at the posterior cortex during the period known as "pseudocleavage." In contrast, in Acrobeloides embryos, where prominent cytoplasmic rearrangements are absent, mitochondria that are initially distributed loosely around the pronuclei and the cytoplasm are relocated around the mitotic spindle prior to cell division. Interestingly, this rearrangement is reiterated only in the germline and not the somatic lineage. In both species, the location of the mitochondria immediately prior to cell division correlates with the known location of the germline determinants, P granules, leading us to speculate that they may be associated.


Subject(s)
Caenorhabditis elegans/embryology , Cell Lineage , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/physiology , Mitochondria/physiology , Animals , Blastomeres/cytology , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Cell Cycle , Cell Division , Cell Polarity , Cytoplasmic Streaming/genetics , Cytoplasmic Streaming/physiology , Embryo, Nonmammalian/embryology , Female , Genes, Helminth , Indicators and Reagents/metabolism , Mutation , Rhodamines/metabolism , Species Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...