Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Ultramicroscopy ; 263: 113981, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38805837

ABSTRACT

Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes challenging when the phases constituting the sample under investigation share common elements and overlap spatially. In this paper, we present a methodology to identify, segment, and unmix phases with a substantial spectral and spatial overlap in a semi-automated fashion through combining non-negative matrix factorization with a priori knowledge of the sample. We illustrate the methodology using a sample taken from an electron beam-sensitive mineral assemblage representing Earth's deep mantle. With it, we retrieve the true EDX spectra of the constituent phases and their corresponding phase abundance maps. It further enables us to achieve a reliable quantification for trace elements having concentration levels of ∼100 ppm. Our approach can be adapted to aid the analysis of many materials systems that produce STEM-EDXS datasets having phase overlap and/or limited signal-to-noise ratio (SNR) in spatially-integrated spectra.

3.
Nature ; 622(7984): 712-717, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37880437

ABSTRACT

The detection of deep reflected S waves on Mars inferred a core size of 1,830 ± 40 km (ref. 1), requiring light-element contents that are incompatible with experimental petrological constraints. This estimate assumes a compositionally homogeneous Martian mantle, at odds with recent measurements of anomalously slow propagating P waves diffracted along the core-mantle boundary2. An alternative hypothesis is that Mars's mantle is heterogeneous as a consequence of an early magma ocean that solidified to form a basal layer enriched in iron and heat-producing elements. Such enrichment results in the formation of a molten silicate layer above the core, overlain by a partially molten layer3. Here we show that this structure is compatible with all geophysical data, notably (1) deep reflected and diffracted mantle seismic phases, (2) weak shear attenuation at seismic frequency and (3) Mars's dissipative nature at Phobos tides. The core size in this scenario is 1,650 ± 20 km, implying a density of 6.5 g cm-3, 5-8% larger than previous seismic estimates, and can be explained by fewer, and less abundant, alloying light elements than previously required, in amounts compatible with experimental and cosmochemical constraints. Finally, the layered mantle structure requires external sources to generate the magnetic signatures recorded in Mars's crust.

4.
Nature ; 619(7971): 733-737, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37316663

ABSTRACT

Knowledge of the interior structure and atmosphere of Mars is essential to understanding how the planet has formed and evolved. A major obstacle to investigations of planetary interiors, however, is that they are not directly accessible. Most of the geophysical data provide global information that cannot be separated into contributions from the core, the mantle and the crust. The NASA InSight mission changed this situation by providing high-quality seismic and lander radio science data1,2. Here we use the InSight's radio science data to determine fundamental properties of the core, mantle and atmosphere of Mars. By precisely measuring the rotation of the planet, we detected a resonance with a normal mode that allowed us to characterize the core and mantle separately. For an entirely solid mantle, we found that the liquid core has a radius of 1,835 ± 55 km and a mean density of 5,955-6,290 kg m-3, and that the increase in density at the core-mantle boundary is 1,690-2,110 kg m-3. Our analysis of InSight's radio tracking data argues against the existence of a solid inner core and reveals the shape of the core, indicating that there are internal mass anomalies deep within the mantle. We also find evidence of a slow acceleration in the Martian rotation rate, which could be the result of a long-term trend either in the internal dynamics of Mars or in its atmosphere and ice caps.

5.
Geophys Res Lett ; 48(12): e2021GL092446, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34219835

ABSTRACT

We carried out a series of silicate fractional crystallization experiments at lower mantle pressures using the laser-heated diamond anvil cell. Phase relations and the compositional evolution of the cotectic melt and equilibrium solids along the liquid line of descent were determined and used to assemble the melting phase diagram. In a pyrolitic magma ocean, the first mineral to crystallize in the deep mantle is iron-depleted calcium-bearing bridgmanite. From the phase diagram, we estimate that the initial 33%-36% of the magma ocean will crystallize to form such a buoyant bridgmanite. Substantial calcium solubility in bridgmanite is observed up to 129 GPa, and significantly delays the crystallization of the calcium silicate perovskite phase during magma ocean solidification. Residual melts are strongly iron-enriched as crystallization proceeds, making them denser than any of the coexisting solids at deep mantle conditions, thus supporting the terrestrial basal magma ocean hypothesis (Labrosse et al., 2007).

6.
Nat Commun ; 12(1): 1712, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33731704

ABSTRACT

The stable forms of carbon in Earth's deep interior control storage and fluxes of carbon through the planet over geologic time, impacting the surface climate as well as carrying records of geologic processes in the form of diamond inclusions. However, current estimates of the distribution of carbon in Earth's mantle are uncertain, due in part to limited understanding of the fate of carbonates through subduction, the main mechanism that transports carbon from Earth's surface to its interior. Oxidized carbon carried by subduction has been found to reside in MgCO3 throughout much of the mantle. Experiments in this study demonstrate that at deep mantle conditions MgCO3 reacts with silicates to form CaCO3. In combination with previous work indicating that CaCO3 is more stable than MgCO3 under reducing conditions of Earth's lowermost mantle, these observations allow us to predict that the signature of surface carbon reaching Earth's lowermost mantle may include CaCO3.

7.
Sci Adv ; 6(48)2020 Nov.
Article in English | MEDLINE | ID: mdl-33239296

ABSTRACT

Exchange between a magma ocean and vapor produced Earth's earliest atmosphere. Its speciation depends on the oxygen fugacity (fO2) set by the Fe3+/Fe2+ ratio of the magma ocean at its surface. Here, we establish the relationship between fO2 and Fe3+/Fe2+ in quenched liquids of silicate Earth-like composition at 2173 K and 1 bar. Mantle-derived rocks have Fe3+/(Fe3++Fe2+) = 0.037 ± 0.005, at which the magma ocean defines an fO2 0.5 log units above the iron-wüstite buffer. At this fO2, the solubilities of H-C-N-O species in the magma ocean produce a CO-rich atmosphere. Cooling and condensation of H2O would have led to a prebiotic terrestrial atmosphere composed of CO2-N2, in proportions and at pressures akin to those observed on Venus. Present-day differences between Earth's atmosphere and those of her planetary neighbors result from Earth's heliocentric location and mass, which allowed geologically long-lived oceans, in-turn facilitating CO2 drawdown and, eventually, the development of life.

8.
Proc Natl Acad Sci U S A ; 117(45): 27893-27898, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33106398

ABSTRACT

The bulk silicate Earth (BSE), and all its sampleable reservoirs, have a subchondritic niobium-to-tantalum ratio (Nb/Ta). Because both elements are refractory, and Nb/Ta is fairly constant across chondrite groups, this can only be explained by a preferential sequestration of Nb relative to Ta in a hidden (unsampled) reservoir. Experiments have shown that Nb becomes more siderophile than Ta under very reducing conditions, leading the way for the accepted hypothesis that Earth's core could have stripped sufficient amounts of Nb during its formation to account for the subchondritic signature of the BSE. Consequently, this suggestion has been used as an argument that Earth accreted and differentiated, for most of its history, under very reducing conditions. Here, we present a series of metal-silicate partitioning experiments of Nb and Ta in a laser-heated diamond anvil cell, at pressure and temperature conditions directly comparable to those of core formation; we find that Nb is more siderophile than Ta under any conditions relevant to a deep magma ocean, confirming that BSE's missing Nb is in the core. However, multistage core formation modeling only allows for moderately reducing or oxidizing accretionary conditions, ruling out the need for very reducing conditions, which lead to an overdepletion of Nb from the mantle (and a low Nb/Ta ratio) that is incompatible with geochemical observations. Earth's primordial magma ocean cannot have contained less than 2% or more than 18% FeO since the onset of core formation.

9.
Nat Commun ; 9(1): 1327, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29666368

ABSTRACT

Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo.

11.
Proc Natl Acad Sci U S A ; 113(40): 11127-11130, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27647917

ABSTRACT

We performed laser-heated diamond anvil cell experiments combined with state-of-the-art electron microanalysis (focused ion beam and aberration-corrected transmission electron microscopy) to study the distribution and valence of iron in Earth's lower mantle as a function of depth and composition. Our data reconcile the apparently discrepant existing dataset, by clarifying the effects of spin (high/low) and valence (ferrous/ferric) states on iron partitioning in the deep mantle. In aluminum-bearing compositions relevant to Earth's mantle, iron concentration in silicates drops above 70 GPa before increasing up to 110 GPa with a minimum at 85 GPa; it then dramatically drops in the postperovskite stability field above 116 GPa. This compositional variation should strengthen the lowermost mantle between 1,800 km depth and 2,000 km depth, and weaken it between 2,000 km depth and the D" layer. The succession of layers could dynamically decouple the mantle above 2,000 km from the lowermost mantle, and provide a rheological basis for the stabilization and nonentrainment of large low-shear-velocity provinces below that depth.

12.
Nature ; 536(7616): 326-8, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27437583

ABSTRACT

Recent palaeomagnetic observations report the existence of a magnetic field on Earth that is at least 3.45 billion years old. Compositional buoyancy caused by inner-core growth is the primary driver of Earth's present-day geodynamo, but the inner core is too young to explain the existence of a magnetic field before about one billion years ago. Theoretical models propose that the exsolution of magnesium oxide--the major constituent of Earth's mantle--from the core provided a major source of the energy required to drive an early dynamo, but experimental evidence for the incorporation of mantle components into the core has been lacking. Indeed, terrestrial core formation occurred in the early molten Earth by gravitational segregation of immiscible metal and silicate melts, transporting iron-loving (siderophile) elements from the silicate mantle to the metallic core and leaving rock-loving (lithophile) mantle components behind. Here we present experiments showing that magnesium oxide dissolves in core-forming iron melt at very high temperatures. Using core-formation models, we show that extreme events during Earth's accretion (such as the Moon-forming giant impact) could have contributed large amounts of magnesium to the early core. As the core subsequently cooled, exsolution of buoyant magnesium oxide would have taken place at the core­mantle boundary, generating a substantial amount of gravitational energy as a result of compositional buoyancy. This amount of energy is comparable to, if not more than, that produced by inner-core growth, resolving the conundrum posed by the existence of an ancient magnetic field prior to the formation of the inner core.

13.
Proc Natl Acad Sci U S A ; 112(40): 12310-4, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26392555

ABSTRACT

The formation of Earth's core left behind geophysical and geochemical signatures in both the core and mantle that remain to this day. Seismology requires that the core be lighter than pure iron and therefore must contain light elements, and the geochemistry of mantle-derived rocks reveals extensive siderophile element depletion and fractionation. Both features are inherited from metal-silicate differentiation in primitive Earth and depend upon the nature of physiochemical conditions that prevailed during core formation. To date, core formation models have only attempted to address the evolution of core and mantle compositional signatures separately, rather than seeking a joint solution. Here we combine experimental petrology, geochemistry, mineral physics and seismology to constrain a range of core formation conditions that satisfy both constraints. We find that core formation occurred in a hot (liquidus) yet moderately deep magma ocean not exceeding 1,800 km depth, under redox conditions more oxidized than present-day Earth. This new scenario, at odds with the current belief that core formation occurred under reducing conditions, proposes that Earth's magma ocean started oxidized and has become reduced through time, by oxygen incorporation into the core. This core formation model produces a core that contains 2.7-5% oxygen along with 2-3.6% silicon, with densities and velocities in accord with radial seismic models, and leaves behind a silicate mantle that matches the observed mantle abundances of nickel, cobalt, chromium, and vanadium.

14.
Proc Natl Acad Sci U S A ; 111(48): 17029-32, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25404309

ABSTRACT

Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium-aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50-100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal-silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion.

15.
Proc Natl Acad Sci U S A ; 111(21): 7542-5, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24821817

ABSTRACT

Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.


Subject(s)
Earth, Planet , Geology/methods , Iron/chemistry , Models, Chemical , Oxygen/chemistry , Computer Simulation , Silicon/chemistry , Specific Gravity , Sulfur/chemistry
16.
Science ; 339(6124): 1194-7, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23306436

ABSTRACT

The abundance of siderophile elements in the mantle preserves the signature of core formation. On the basis of partitioning experiments at high pressure (35 to 74 gigapascals) and high temperature (3100 to 4400 kelvin), we demonstrate that depletions of slightly siderophile elements (vanadium and chromium), as well as moderately siderophile elements (nickel and cobalt), can be produced by core formation under more oxidizing conditions than previously proposed. Enhanced solubility of oxygen in the metal perturbs the metal-silicate partitioning of vanadium and chromium, precluding extrapolation of previous results. We propose that Earth accreted from materials as oxidized as ordinary or carbonaceous chondrites. Transfer of oxygen from the mantle to the core provides a mechanism to reduce the initial magma ocean redox state to that of the present-day mantle, reconciling the observed mantle vanadium and chromium concentrations with geophysical constraints on light elements in the core.

17.
Science ; 331(6013): 64-7, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21212352

ABSTRACT

Seismic discontinuities in Earth typically arise from structural, chemical, or temperature variations with increasing depth. The pressure-induced iron spin state transition in the lower mantle may influence seismic wave velocities by changing the elasticity of iron-bearing minerals, but no seismological evidence of an anomaly exists. Inelastic x-ray scattering measurements on (Mg(0.83)Fe(0.17))O-ferropericlase at pressures across the spin transition show effects limited to the only shear moduli of the elastic tensor. This explains the absence of deviation in the aggregate seismic velocities and, thus, the lack of a one-dimensional seismic signature of the spin crossover. The spin state transition does, however, influence shear anisotropy of ferropericlase and should contribute to the seismic shear wave anisotropy of the lower mantle.

18.
Phys Rev Lett ; 98(19): 196404, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17677640

ABSTRACT

We investigate the magnetic properties of archetypal transition-metal oxides MnO, FeO, CoO, and NiO under very high pressure by x-ray emission spectroscopy at the Kbeta line. We observe a strong modification of the magnetism in the megabar range in all the samples except NiO. The results are analyzed within a multiplet approach including charge-transfer effects. The spectral changes are well accounted for by changes of the ligand field acting on the d electrons and allows us to extract the d-hybridization strength, O-2p bandwidth and ionic crystal field across the magnetic transition. This approach allows first-hand insight into the mechanism of the pressure-induced spin transition.

19.
Phys Rev Lett ; 96(11): 115502, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16605838

ABSTRACT

We have determined the lattice dynamics of molybdenum at high pressure to 37 GPa using high-resolution inelastic x-ray scattering. Over the investigated pressure range, we find a significant decrease in the H-point phonon anomaly. We also present calculations based on density functional theory that accurately predict this pressure dependence. Based on these results, we infer that the likely explanation for the H-point anomaly in molybdenum is strong electron-phonon coupling, which decreases upon compression due to the shift of the Fermi level with respect to the relevant electronic bands.

20.
J Phys Condens Matter ; 18(25): S963-8, 2006 Jun 28.
Article in English | MEDLINE | ID: mdl-22611105

ABSTRACT

The elasticity and plasticity of materials at high pressure are of great importance for the fundamental insight they provide on bonding properties in dense matter and for applications ranging from geophysics to materials technology. We studied pressure-solidified argon with a boron-epoxy-beryllium composite gasket in a diamond anvil cell (DAC). Employing monochromatic synchrotron x-radiation and imaging plates in a radial diffraction geometry (Singh et al 1998 Phys. Rev. Lett. 80 2157; Mao et al 1998 Nature 396 741), we observed low strength in solid argon below 20 GPa, but the strength increases drastically with applied pressure, such that at 55 GPa, the shear strength exceeded 2.7 GPa. The elastic anisotropy at 55 GPa was four times higher than the extrapolated value from 30 GPa. Extensive (111) slip develops under uniaxial compression, as manifested by the preferred crystallographic orientation of (220) in the compression direction. These macroscopic properties reflect basic changes in van der Waals bondings under ultrahigh pressures.

SELECTION OF CITATIONS
SEARCH DETAIL
...