Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Entropy (Basel) ; 25(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36832607

ABSTRACT

Distributed video coding (DVC) is based on distributed source coding (DSC) concepts in which video statistics are used partially or completely at the decoder rather than the encoder. The rate-distortion (RD) performance of distributed video codecs substantially lags the conventional predictive video coding. Several techniques and methods are employed in DVC to overcome this performance gap and achieve high coding efficiency while maintaining low encoder computational complexity. However, it is still challenging to achieve coding efficiency and limit the computational complexity of the encoding and decoding process. The deployment of distributed residual video coding (DRVC) improves coding efficiency, but significant enhancements are still required to reduce these gaps. This paper proposes the QUAntized Transform ResIdual Decision (QUATRID) scheme that improves the coding efficiency by deploying the Quantized Transform Decision Mode (QUAM) at the encoder. The proposed QUATRID scheme's main contribution is a design and integration of a novel QUAM method into DRVC that effectively skips the zero quantized transform (QT) blocks, thus limiting the number of input bit planes to be channel encoded and consequently reducing both the channel encoding and decoding computational complexity. Moreover, an online correlation noise model (CNM) is specifically designed for the QUATRID scheme and implemented at its decoder. This online CNM improves the channel decoding process and contributes to the bit rate reduction. Finally, a methodology for the reconstruction of the residual frame (R^) is developed that utilizes the decision mode information passed by the encoder, decoded quantized bin, and transformed estimated residual frame. The Bjøntegaard delta analysis of experimental results shows that the QUATRID achieves better performance over the DISCOVER by attaining the PSNR between 0.06 dB and 0.32 dB and coding efficiency, which varies from 5.4 to 10.48 percent. In addition to this, results determine that for all types of motion videos, the proposed QUATRID scheme outperforms the DISCOVER in terms of reducing the number of input bit-planes to be channel encoded and the entire encoder's computational complexity. The number of bit plane reduction exceeds 97%, while the entire Wyner-Ziv encoder and channel coding computational complexity reduce more than nine-fold and 34-fold, respectively.

2.
Sensors (Basel) ; 22(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35808261

ABSTRACT

Drowsiness is one of the main causes of road accidents and endangers the lives of road users. Recently, there has been considerable interest in utilizing features extracted from electroencephalography (EEG) signals to detect driver drowsiness. However, in most of the work performed in this area, the eyeblink or ocular artifacts present in EEG signals are considered noise and are removed during the preprocessing stage. In this study, we examined the possibility of extracting features from the EEG ocular artifacts themselves to perform classification between alert and drowsy states. In this study, we used the BLINKER algorithm to extract 25 blink-related features from a public dataset comprising raw EEG signals collected from 12 participants. Different machine learning classification models, including the decision tree, the support vector machine (SVM), the K-nearest neighbor (KNN) method, and the bagged and boosted tree models, were trained based on the seven selected features. These models were further optimized to improve their performance. We were able to show that features from EEG ocular artifacts are able to classify drowsy and alert states, with the optimized ensemble-boosted trees yielding the highest accuracy of 91.10% among all classic machine learning models.


Subject(s)
Electroencephalography , Support Vector Machine , Algorithms , Electroencephalography/methods , Humans , Machine Learning , Signal Processing, Computer-Assisted
3.
Clin Neuroradiol ; 28(2): 267-281, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28116447

ABSTRACT

PURPOSE: To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches. MATERIAL AND METHODS: Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests. RESULTS: The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches. CONCLUSION: Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.


Subject(s)
Brain Neoplasms/diagnostic imaging , Evoked Potentials, Somatosensory , Magnetoencephalography , Adult , Brain Mapping , Female , Humans , Magnetic Fields , Male , Middle Aged , Somatosensory Cortex , Young Adult
4.
Med Biol Eng Comput ; 56(1): 125-136, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29043535

ABSTRACT

Mental stress has been identified as one of the major contributing factors that leads to various diseases such as heart attack, depression, and stroke. To avoid this, stress quantification is important for clinical intervention and disease prevention. This study aims to investigate the feasibility of exploiting electroencephalography (EEG) signals to discriminate between different stress levels. We propose a new assessment protocol whereby the stress level is represented by the complexity of mental arithmetic (MA) task for example, at three levels of difficulty, and the stressors are time pressure and negative feedback. Using 18-male subjects, the experimental results showed that there were significant differences in EEG response between the control and stress conditions at different levels of MA task with p values < 0.001. Furthermore, we found a significant reduction in alpha rhythm power from one stress level to another level, p values < 0.05. In comparison, results from self-reporting questionnaire NASA-TLX approach showed no significant differences between stress levels. In addition, we developed a discriminant analysis method based on multiclass support vector machine (SVM) with error-correcting output code (ECOC). Different stress levels were detected with an average classification accuracy of 94.79%. The lateral index (LI) results further showed dominant right prefrontal cortex (PFC) to mental stress (reduced alpha rhythm). The study demonstrated the feasibility of using EEG in classifying multilevel mental stress and reported alpha rhythm power at right prefrontal cortex as a suitable index.


Subject(s)
Electroencephalography , Multilevel Analysis , Stress, Psychological/diagnosis , Support Vector Machine , Alpha Rhythm/physiology , Electrodes , Humans , Male , ROC Curve , Young Adult
5.
Sensors (Basel) ; 17(9)2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28858220

ABSTRACT

Driver drowsiness is a major cause of fatal accidents, injury, and property damage, and has become an area of substantial research attention in recent years. The present study proposes a method to detect drowsiness in drivers which integrates features of electrocardiography (ECG) and electroencephalography (EEG) to improve detection performance. The study measures differences between the alert and drowsy states from physiological data collected from 22 healthy subjects in a driving simulator-based study. A monotonous driving environment is used to induce drowsiness in the participants. Various time and frequency domain feature were extracted from EEG including time domain statistical descriptors, complexity measures and power spectral measures. Features extracted from the ECG signal included heart rate (HR) and heart rate variability (HRV), including low frequency (LF), high frequency (HF) and LF/HF ratio. Furthermore, subjective sleepiness scale is also assessed to study its relationship with drowsiness. We used paired t-tests to select only statistically significant features (p < 0.05), that can differentiate between the alert and drowsy states effectively. Significant features of both modalities (EEG and ECG) are then combined to investigate the improvement in performance using support vector machine (SVM) classifier. The other main contribution of this paper is the study on channel reduction and its impact to the performance of detection. The proposed method demonstrated that combining EEG and ECG has improved the system's performance in discriminating between alert and drowsy states, instead of using them alone. Our channel reduction analysis revealed that an acceptable level of accuracy (80%) could be achieved by combining just two electrodes (one EEG and one ECG), indicating the feasibility of a system with improved wearability compared with existing systems involving many electrodes. Overall, our results demonstrate that the proposed method can be a viable solution for a practical driver drowsiness system that is both accurate and comfortable to wear.


Subject(s)
Sleep Stages , Automobile Driving , Electrocardiography , Electroencephalography , Humans , Support Vector Machine
6.
Biomed Opt Express ; 7(10): 3882-3898, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27867700

ABSTRACT

Previous studies reported mental stress as one of the major contributing factors leading to various diseases such as heart attack, depression and stroke. An accurate stress assessment method may thus be of importance to clinical intervention and disease prevention. We propose a joint independent component analysis (jICA) based approach to fuse simultaneous measurement of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) on the prefrontal cortex (PFC) as a means of stress assessment. For the purpose of this study, stress was induced by using an established mental arithmetic task under time pressure with negative feedback. The induction of mental stress was confirmed by salivary alpha amylase test. Experiment results showed that the proposed fusion of EEG and fNIRS measurements improves the classification accuracy of mental stress by +3.4% compared to EEG alone and +11% compared to fNIRS alone. Similar improvements were also observed in sensitivity and specificity of proposed approach over unimodal EEG/fNIRS. Our study suggests that combination of EEG (frontal alpha rhythm) and fNIRS (concentration change of oxygenated hemoglobin) could be a potential means to assess mental stress objectively.

7.
Australas Phys Eng Sci Med ; 38(4): 721-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26462677

ABSTRACT

3D movies are attracting the viewers as they can see the objects flying out of the screen. However, many viewers have reported various problems which are usually faced after watching 3D movies. These problems include visual fatigue, eye strain, headaches, dizziness, blurred vision or collectively may be termed as visually induced motion sickness (VIMS). This research focuses on the comparison between 3D passive technology with a conventional 2D technology to find that whether 3D is causing trouble in the viewers or not. For this purpose, an experiment was designed in which participants were randomly assigned to watch 2D or a 3D movie. The movie was specially designed to induce VIMS. The movie was shown for the duration of 10 min to every participant. The electroencephalogram (EEG) data was recorded throughout the session. At the end of the session, participants rated their feelings using simulator sickness questionnaire (SSQ). The SSQ data was analyzed and the ratings of 2D and 3D participants were compared statistically by using a two tailed t test. From the SSQ results, it was found that participants watching 3D movies reported significantly higher symptoms of VIMS (p value <0.05). EEG data was analyzed by using MATLAB and topographic plots are created from the data. A significant difference has been observed in the frontal-theta power which increases with the passage of time in 2D condition while decreases with time in 3D condition. Also, a decrease in beta power has been found in the temporal lobe of 3D group. Therefore, it is concluded that there are negative effects of 3D movies causing significant changes in the brain activity in terms of band powers. This condition leads to produce symptoms of VIMS in the viewers.


Subject(s)
Electroencephalography/methods , Image Processing, Computer-Assisted/methods , Motion Sickness/physiopathology , Signal Processing, Computer-Assisted , Brain/anatomy & histology , Brain/physiology , Humans , Surveys and Questionnaires
8.
Australas Phys Eng Sci Med ; 38(1): 139-49, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25649845

ABSTRACT

This paper describes a discrete wavelet transform-based feature extraction scheme for the classification of EEG signals. In this scheme, the discrete wavelet transform is applied on EEG signals and the relative wavelet energy is calculated in terms of detailed coefficients and the approximation coefficients of the last decomposition level. The extracted relative wavelet energy features are passed to classifiers for the classification purpose. The EEG dataset employed for the validation of the proposed method consisted of two classes: (1) the EEG signals recorded during the complex cognitive task--Raven's advance progressive metric test and (2) the EEG signals recorded in rest condition--eyes open. The performance of four different classifiers was evaluated with four performance measures, i.e., accuracy, sensitivity, specificity and precision values. The accuracy was achieved above 98 % by the support vector machine, multi-layer perceptron and the K-nearest neighbor classifiers with approximation (A4) and detailed coefficients (D4), which represent the frequency range of 0.53-3.06 and 3.06-6.12 Hz, respectively. The findings of this study demonstrated that the proposed feature extraction approach has the potential to classify the EEG signals recorded during a complex cognitive task by achieving a high accuracy rate.


Subject(s)
Electroencephalography/classification , Machine Learning , Wavelet Analysis , Adult , Cognition/physiology , Humans , Male , Reproducibility of Results , Task Performance and Analysis , Young Adult
9.
Article in English | MEDLINE | ID: mdl-26738049

ABSTRACT

Visual and mental fatigues induced by active shutter stereoscopic 3D (S3D) display have been reported using event-related brain potentials (ERP). An important question, that is whether such effects (visual & mental fatigues) can be found in passive polarized S3D display, is answered here. Sixty-eight healthy participants are divided into 2D and S3D groups and subjected to an oddball paradigm after being exposed to S3D videos with passive polarized display or 2D display. The age and fluid intelligence ability of the participants are controlled between the groups. ERP results do not show any significant differences between S3D and 2D groups to find the aftereffects of S3D in terms of visual and mental fatigues. Hence, we conclude that passive polarized S3D display technology may not induce visual and/or mental fatigue which may increase the cognitive load and suppress the ERP components.


Subject(s)
Asthenopia/diagnosis , Depth Perception , Imaging, Three-Dimensional/methods , Mental Fatigue/diagnosis , Adolescent , Adult , Evoked Potentials , Female , Humans , Male , Photic Stimulation , Reaction Time , Task Performance and Analysis , Time Factors , Young Adult
10.
Article in English | MEDLINE | ID: mdl-24111207

ABSTRACT

3D stereoscopy technology with high quality images and depth perception provides entertainment to its viewers. However, the technology is not mature yet and sometimes may have adverse effects on viewers. Some viewers have reported discomfort in watching videos with 3D technology. In this research we performed an experiment showing a movie in 2D and 3D environments to participants. Subjective and objective data are recorded and compared in both conditions. Results from subjective reporting shows that Visually Induced Motion Sickness (VIMS) is significantly higher in 3D condition. For objective measurement, ECG data is recorded to find the Heart Rate Variability (HRV), where the LF/HF ratio, which is the index of sympathetic nerve activity, is analyzed to find the changes in the participants' feelings over time. The average scores of nausea, disorientation and total score of SSQ show that there is a significant difference in the 3D condition from 2D. However, LF/HF ratio is not showing significant difference throughout the experiment.


Subject(s)
Depth Perception/physiology , Electrocardiography , Heart Rate/physiology , Motion Sickness/physiopathology , Vision, Ocular/physiology , Brain/physiology , Humans , Motion , Probability , Retina/physiology , Sample Size , Signal Processing, Computer-Assisted , Software , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...